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Abstract
It is important in the energy management of a building that
energy consumption forecasts made by neural networks (re-
ferred to as black boxes) are backed up by consistent expla-
nations from the model itself. Although the existing inter-
pretable methods provide helpful information, it is not prac-
tical enough for energy managers. Expressly, the managers
are not provided with an explanation for a certain period in
the forecasted time series of energy consumption. We cover
this lack of explanation by proposing a novel interpretabil-
ity use case: explaining the shapelet of a period’s forecast
based on similar patterns in the past energy consumption
profile, which our forecasting model can verify. Another in-
terpretability use case is presented to explain better the elec-
tricity consumption forecast: determining the importance of
each exogenous variable in the prediction problem. Temporal
Fusion Transformers (TFT), a state-of-the-art, interpretable,
and accurate forecasting model is employed to address the
interpretability use cases via analyzing the distribution of
attention weights. The results of applying the use cases on
our dataset are demonstrated.
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1 Introduction
Predicting a building’s energy demand (consumption) ahead
of time is critical in minimizing energy supply errors. In case
of over-supply (surplus production), the exceeding generated
electricity can not be easily stored, re-directed, or sold to a
wider grid. On the opposite, under-supplymay lead to critical
energy shortages. It follows that if a machine learning model
is being employed to forecast energy consumption, it must
deliver both interpretable forecasts (e.g., what would explain
a certain trend or peak) and small prediction errors to avoid
critical and costly consequences. Therefore, at the time of
making energy-related decisions, building energy managers
appreciate being able to justify why a forecasting model has
made its specific predictions.

Most of the advanced forecasting models available today
are black-boxes (i.e., it is not clear how the models process
the input and make the prediction) [4]. Interpretable models,
on the other hand, offer interpretability use cases that are
mostly impractical to energy managers [1]. These models
only demonstrate the important periods (e.g., in attention-
based models) and input features or the interpretable com-
ponents (e.g., in classic and hybrid models) to predict the
time-series data [3][2]. Although this information is helpful,
it is too generic; in practice, energy managers can benefit
from knowing which specific periods in past time series
had been likely responsible for (can explain) predicting the
desired period in the future. We bridge this gap by using Tem-
poral Fusion Transformer (TFT) [3], which is a deep learning
model for time series forecasting based on transformer ar-
chitecture. With the help of its attention mechanism, TFT
can shed light on how it makes its forecasts.

1.1 Contributions
The main contributions of this work are:

• Anovel interpretability use case to explain the shapelet
of a period’s forecast based on similar patterns in the
past energy consumption profile. Moreover, the expla-
nation is verified by the TFT.

• Another practical interpretability use case to deter-
mine the importance of each exogenous variable in
the forecasts made by TFT model.
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2 Interpretability Use Cases
2.1 Justifying Forecast’s Shapelet
The model used for energy consumption forecasting (TFT)
is data-driven, i.e., it makes predictions into the future based
on the underlying patterns that it has learned from past ob-
servations. Therefore, it makes sense to justify the model’s
forecasts for a period based on what the model has learned
from the period’s past time series. If there is a specific "tempo-
ral forward window" for which the model has forecasted an
energy consumption profile, the forecasted pattern is called
a shapelet or simply the query. To explain why the model has
forecasted the query and its shape, one can look backward to
find similar patterns to the query across preceding temporal
windows in the training time series segment. Every similar
shapelet/pattern found in the past predicted time series is
called a match. The next step is to verify that the forecasting
of the query and its matches follow the same pattern that the
model has learned. The TFTmodel is used to approve that the
query’s pattern is based on its matches’ pattern by checking
that the query and its matches have a similar self-attention
weights distribution. Figure 1-(a) shows an example of this
use case.

Figure 1. Interpreting forward predictions with TFT, (a) the
query is a high peak which energy managers are interested
in having an explanation for (b) the best-found match in
the search for "similar shapelets" to query and its look-back
window. Both the query and the match are identified as
significant regimes (have a similar distribution of attention
weights). Therefore, they have the same learned shapelet.

2.2 Determining Variable Importance
This use case determines the extent to which an exogenous
variable is important to predict the energy consumption
of a particular period using the TFT model. TFT utilizes a
"Variable Selection Network," which provides the model with
instance-wise insights into the significance of each variable
for the predictions. The variable selection network weights
distribution is analyzed for each of the mentioned covariate
types. This way, the relative importance of each variable in
the forecasting problem can be measured. The importance
of variables of our dataset1 is presented in table 1.

Water Flow EXT Temp Week Day MW
0.280 0.047 0.082 0.589

Table 1. Global importance of variables in the forecasting
of the test data, based on the variable selection weights.

3 Conclusion
In this work, two use cases are presented to interpret the
forecasted electricity consumption of a building by employ-
ing the TFT model. The first and novel use case explains
the shapelet of a period’s forecast (query) based on simi-
lar patterns (matches) in its past time series. By observing
the analogy between the query and its matches in terms of
the distribution of TFT’s attention weights, one can verify
that the query and its matches are predicted based on the
same learned shapelet by the model. The second use case
analyzes the importance of each exogenous variable in a
period’s forecast.

3.1 Future Work
Future research could compare the forecast explanations
of TFT and other types of intrinsically interpretable mod-
els, e.g., SARIMAX (classical), NeuralProphet (hybrid), and
LightGBM (decision tree-based). Extending the dataset with
other exogenous variables like occupant presence and study-
ing their importance in the energy consumption forecasts is
suggested.
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