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Abstract

Due to the increasing battery capacity of electric vehicles, European standard electricity
socket-outlets at households are not enough for a full charge cycle overnight. Hence,
people tend to install (semi-) fast charging wall-boxes (up to 22 kW) which can cause
critical peak loads and voltage issues whenever many electric vehicles charge
simultaneously in the same area.
This paper proposes a centralized charging capacity allocation mechanism based on
queuing systems that takes care of grid limitations and charging requirements of
electric vehicles, including legacy charging control protocol restrictions. The proposed
allocation mechanism dynamically updates the weights of the charging services in
discrete time steps, such that electric vehicles with shorter remaining charging time
and higher energy requirement are preferred against others. Furthermore, a set of
metrics that determine the service quality for charging as a service is introduced.
Among others, these metrics cover the ratio of charged energy to the required energy,
the charging power variation during the charging process, as well as whether the
upcoming trip is feasible or not. The proposed algorithm outperforms simpler
scheduling policies in terms of achieved mean quality of service metric and fairness
index in a co-simulation of the IEEE European low voltage grid configured with
charging service requirements extracted from a mobility survey.

Keywords: Dynamically weighted fair queuing, Electric vehicle charging, Smart grid,
Fair charging service allocation, Queuing model, Quality of service

Introduction
Electric Vehicles (EVs) are seen as one of the key means to reduce the global greenhouse
gas emission and air pollution in the transportation sector, especially with the growing use
of renewable energy. According to the European Transport Roadmap (European Commis-
sion 2011), the European Union encourages the use of EVs to reduce the emission by 80%
to 95% below 1990 levels by 2050. The trend towards battery-electrical transportation, the
continuously increasing battery storage capacity and driving range of EVs will likely create
a high pressure on present power supply infrastructure in the future. Especially the power
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distribution system may be affected, since many EVs will be charged at home due to con-
venience and economical reasons (IEA 2020). In order to manage the increasing number
of EV charging processes, either the grid must be enhanced to cope with the new peak
loads, or an intelligent charging capacity distribution mechanism needs to be established.
Because grid expansion is economically and ecologically not always reasonable (Brinkel
et al. 2020), intelligent charging control seem to be a promising solution to orchestrate EV
charging in the low voltage grid. However, charging control algorithms need to achieve
a high Quality of Service (QoS) and Quality of Experience (QoE) in times of grid con-
gestion while ensuring fairness between parallel charging services to retain customers
confidence. In this context, electricity (in the form of available grid capacity) can be seen
as a limited resource that has to be shared by several end consumers in the power grid. A
similar problem exists within the communication networks domain, where several con-
nections share the same physical link with a limited bandwidth. We propose to offer EV
customers a charging service that is inspired by computer networking, where only up to
a certain bandwidth is provided. The actually received charging current is dynamically
adjusted to the grid state and is balanced among charging services to ensure QoS, QoE
and fairness.

Solutions in literature that consider (real-time) EV charging allocation (Ardakanian et
al. 2013; Ardakanian et al. 2014; Kong et al. 2016; Rudnik et al. 2020; Shi and Liu 2015)
aim for proportional fairness on the real-time demand, which is also generally discussed
with regard to congestion management (Hekkelman and Poutré 2020) and demand sup-
ply matching (Haslak 2020). Schlund et al. (2020) use the laxity of charging processes
to enable bidirectional flexibility potential of distributed EV charging processes. Other
authors propose price-based solutions (Gan et al. 2011; Hu et al. 2014; Wang et al. 2015).
QoS aspects are mainly discussed in combination with charging station sizing (Bayram et
al. 2011; Islam et al. 2018; Ul-Haq et al. 2013). However, a few papers investigate QoS and
fairness based on other charging parameters in their allocation mechanisms (Frendo et
al. 2019; Rezaei et al. 2014; Al Zishan et al. 2020; Zhou et al. 2013; Zhou et al. 2014), but
they either ignore the impact on the low voltage grid or do not consider controllability
limitations of existing EV communication protocols.

The contribution of this paper can be summarized as follows:

• We first define a set of QoS and QoE metrics in “Requirements for fair charging
service allocation” section that consider the ratio of charged energy to the required
energy, the continuity of charging rate, the battery State of Charge (SoC) at departure
and the ability to reach an upcoming destination.

• Second, we propose an efficient and hierarchically scalable packet queuing allocation
mechanism in “Queuing approach for electric vehicle charging” and “Queuing
policies” sections that takes the residual charging time and the current SoC into
account and ensures fairness between charging services. Our provided model
includes not only temporal charging slot allocation (with fixed charging rates), but
also distributes the charging capacity during each time slot while respecting charging
hardware limitations and control protocol capabilities.

• In “Evaluation” section, our proposed solution is finally evaluated on the IEEE
European low voltage test feeder with real user driving profiles extracted from a
mobility survey. In contrast to simpler queuing policies, the proposed dynamically
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weighted fair queuing approach achieves both, high QoS results and good fairness
indices throughout the whole charging service.

Related work
There are many papers in literature that deal with coordinated smart charging of EVs
targeting the mitigation of power grid issues as their main objective (Alyousef and de
Meer 2019; Alyousef et al. 2018; Chung et al. 2014; Lopes et al. 2009; Deilami et al. 2011;
Cortés and Martínez 2016; Rivera et al. 2015; Alonso et al. 2014; Kong et al. 2016; Mar-
tinenas et al. 2017; Álvarez et al. 2016). However, in this paper we see EV charging is a
service to the user, hence the main objective is to make EV drivers happy under the given
grid constraints. Therefore, we focus on QoS, QoE and fairness aspects of the charging
services.

Nevertheless, there are approaches in literature which try to achieve a certain QoS level
of EV charging processes. Some solutions consider public (fast) charging stations as their
main focus area and define QoS with respect to the probability that an EV is blocked at a
charging station (Bayram et al. 2011; Bayram et al. 2015; Zenginis et al. 2016). In Ul-Haq
et al. (2013), all EVs can supply energy back to the charging station and QoS includes also
continuity of power supply and overall charging time, whereas the QoS definition in Erol-
Kantarci et al. (2012) only relates to the overall charging time and finishing charging faster
implies a higher QoS. Similarly, the QoS in Fan (2012); Haack et al. (2013) is extracted
from the charging time, but as binary variable. Only if an EV finishes charging within
the required time, it is considered to meet the QoS, no matter what the charging power
profile looks like and what final SoC is reached. Our QoS definitions include all metrics
from literature and additional QoE metrics that include the circumstances of the charging
service to retain customers satisfaction.

None of the above papers consider QoS fairness by design, because most of them are
price based or focus only on local charging station sizing (hence only the total QoS
for sequential charging processes). In Islam et al. (2016; 2018), photovoltaic and bat-
tery sizing are optimized at parking lots for a specific use case of business charging.
Their optimization considers QoS as the ratio of charging energy delivered to charg-
ing energy demanded. Furthermore, the probabilistic charging model used in Islam et
al. (2018) introduces a fairness factor, which influences the charging rate of each sin-
gle EV based on its SoC. In Ucer et al. (2019) quality of power service is defined such
that the voltage drop must be kept stable, but proportional fair charging rates must
be provided to all EVs, regardless of their location in the grid. As a result, quality of
service to charging EVs is defined on the instantaneous power delivery. Alyousef and
de Meer (2019) also focus on the power quality of the grid and implicitly define the
QoS in terms of energy delivered to the EV without differentiating the actual energy
requirement of the user. Their Transmission Control Protocol (TCP) inspired approach
results in a fairer distribution than a purely power quality aware algorithm from Alyousef
et al. (2018). Ardakanian et al. (2013; 2014) describe the proportionally fair distribu-
tion of available power capacity as an optimization problem that can be solved in
a distributed manner via decomposition of its dual problem. The satisfaction of an
EV user about a charging process is defined depending on the current charging rate,
while the charging service situation such as the SoC and residual charging duration is
neglected.
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The approach in Zhou et al. (2013) shows how available power capacity can be shared
fairly using weighted fair queuing scheduling. Their approach is based on packetization
of the charging process of EVs, where each packet represents the permission to charge
for the next time slot. These packets are queued by the single charging processes to
the proposed scheduler, which computes the packet assignment based on their stati-
cally determined weight at arrival time. In their solution, demand and supply mismatch
defines the available power, whereas we also take a look to the underlying power grid
topology. Furthermore, we consider both, the required energy and the remaining time
until departure for decision making. Additionally, instead of switching the EVs on and
off, EVs receive dynamic charging rates. In Zhou et al. (2014), the same authors com-
pare different scheduling algorithms from the networking context, e.g. round-robin, first
come first serve or first depart first serve, for distributing the available power to charg-
ing processes. A similar temporal packet-based mechanisms, which uses a probabilistic
automaton to limit the transformer utilization by allowing or denying charging requests
from distributed EVs, is proposed in Rezaei et al. (2014). According to Chen et al. (2013),
pulse charging of EV batteries is not degrading battery lifetime. But switching huge loads
of 22 kW can cause undesired high voltage fluctuations in the grid.

One recent publications on fair charging capacity allocation considers the laxity of a
charging process as weights in an optimization problem, which is solved in a decentralized
manner (Al Zishan et al. 2020). In order to reduce the impact of users cheating with their
departure time, they propose to integrate the reputation of the user into the weights, such
that people who estimate their departure time similar exactly obtain the same fair share
of power capacity. Despite the fact that (distributed) optimization problems tend to be
not very efficient, their output does not integrate actual hardware control capabilities,
like limitations of the control protocols or adjustable power limits. Furthermore, fairness
is measured on the actual charging power, neglecting other quality of charging service
aspects.

In a different application area, Chen et al. (2012) propose a fair power allocation for air
conditioners in the smart grid, where the power consumption is indirectly controlled by
allocating thermostat settings in each time slot. In this way, ambient temperature and the
amount of power required for the same temperature reduction is decoupled and fairness
is defined on the QoS level of air conditioning. Similarly in our paper, QoS aspects for a
charging service are not necessarily coupled to the actual charging power but measured
by charging as a service related metrics.

Methodology
We first state the requirements for a fair charging resource allocation and define relevant
metrics to measure QoS, QoE and fairness of a charging service. Afterwards we describe
the proposed queuing architecture and discuss various queuing policies.

Requirements for fair charging service allocation

The most intuitive notion of fairness is sharing a limited resource proportionally between
all participants (EVs), like flow-based fairness in networking (e.g. fairness achieved with
TCP). However, some charging processes might require more energy, while the avail-
able charging time may be relatively short. Other EVs with longer available charging time
require only less energy and, hence, benefit more from proportional fairness. Therefore,
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we will have a look at service-based fairness, where charging services are defined by: (1) the
time of arrival tarr and departure tdep, which together form the available charging time,
and (2) the required energy to be charged Ereq > 0. We assume that EV drivers provide
their expected departure time and required energy with high confidence, whereby the
later can be extracted from the last driven trip. Furthermore, we use a discrete time model
with constant time slot size of �, where tsta denotes the first time slot within [ tarr , tdep]
when the EV is charging and tfin the time slot when either its battery SoC reaches 100% or
the EV needs to leave at (planned) departure time. Additionally, the charging power pro-
file P(t) is ≥ 0, because vehicle-to-grid is not considered in this paper. Figure 1 depicts all
relevant charging service parameters.

QoS is the measurement of the overall performance of a service and was initially intro-
duced for telecommunication services by ITU in 1994 (ITU 2008). The QoS definition
implies that characteristics of a service, which can be measured quantitatively or qual-
itatively, need to match the users requirements towards the service, and hence involve
the user. QoE is defined as "The degree of delight or annoyance of the user of an applica-
tion or service" (Brunnström et al. 2013). The QoE relates (not necessary linearly) to QoS
parameters and additionally integrates the personality and the current state of the user.
QoE models are often derived from user surveys, but can also be metrics on the QoS
parameters. For example, an EV that can fully recharge its battery during the available
charging time receives a high QoS, since the charging service succeeds. If the charging
process cannot finish before departure, the QoS is obviously lower. However, if the EV
has recharged enough energy to reach the next destination (independent of whether the
charging process has finished), the QoE is obviously higher than if an additional charging
stop is required during the next trip.

QoS1 The main goal of a charging service is to deliver the required energy Ereq to an EV.
Obviously, a finished charging process receives maximal QoS. If the energy target is not
met, the QoS degrades proportional to the energy charged. The QoS metric in Eq. 1 can
be evaluated at each point in time during the charging process and QoS1(tdep) denotes the
final metric score of the charging service.

QoS1(t) = E(t)
Ereq

(1)

QoS2 We consider the waiting time of a charging process as second QoS criteria. It fol-
lows the logic that a charging process that starts earlier has a higher chance to finish in
time. Furthermore, waiting charging processes do not receive any service until the charg-
ing process actually starts. Therefore, waiting charging processes receive a lower QoS
score, like defined in Eq. 2.

Fig. 1 Overview of a charging service. Note that tfin can be equal to tdep
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QoS2 =
{

1 − tsta−tarr
tdep−tarr

if ∃P(t) > 0,
0 else

(2)

In case the charging process does not start at all, the charging power profile (P(t)) is the
identical zero function and hence no P(t) > 0 exists, which results in QoS2 = 0. An
immediately starting charging process (tsta = tarr) receives highest QoS score.

QoS3 A third QoS criteria is the variation of the charging power P(t) over time. In com-
munication networks we would refer to as packet jitter, which measures the variation
of packet delays. For an EV charging service, we focus on the charging power variation
between the time slots, where high charging power variation results in bad residual charg-
ing time estimation, which in turn reduces the QoS of the feedback towards the user. The
respective metric is defined in Eq. 3, where s(X) is the sample standard deviation of a set
X = {x1, . . . , xn}.

QoS3 = 1 − 2 · s(P(t))
Pmax

(3)

The sample standard deviation s(P(t)) returns a value from the interval
[
0, 1

2 Pmax
]
,

because the charging power profile is limit between 0 and Pmax. Note that for calculat-
ing QoS3, values of P(t) are only taken from the interval t ∈[ tsta, tfin], because only the
variation during the actual charging matters.

QoE1 The first QoE metric refers to the battery SoC instead of the actually charged
energy of the charging service. Especially, with different battery sizes, but same energy
requirements, a user finally does not see the actual energy charged, but only the battery
SoC is displayed in the car. Following this users’ recognition, a high SoC (near to SoCtarget)
corresponds to a high QoE and vice versa. Similar to QoS1, the QoE metric in Eq. 4 can
be evaluated at each point in time during a charging process and QoE1(tdep) is the final
metric score.

QoE1(t) = SoC(t)
SoCtarget

(4)

QoE2 A second criteria of QoE is whether the EV driver will reach the next destination,
which can be expressed as a binary metric like in Eq. 5. In this work, we define the next
trip to be feasible if the battery holds enough energy to reach the next destination with
a SoC greater than 10% at arrival. With the remaining SoC it should be possible to reach
the next charging facility. This again relates to the users’ recognition and range anxiety,
which let the driver recharge the battery before running out of energy.

QoE2 =
{

1 if next trip is feasible,
0 else

(5)

Besides high quality of service and experience scores, fairness among different users
matters. A very unfair allocation means that the QoS and QoE metrics differ significantly
among the different charging services, whereas very similar metric scores can be con-
sidered as fair. Note that in order to analyze fairness separately from the QoS and QoE
values, the fairness index must be independent of the metric values. Therefore, we use
the fairness index from Hoßfeld et al. (2018) in Eq. 6, where H defines the maximum
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and L defines the minimum possible metric value. The index calculation uses the sam-
ple standard deviation s(S) of the metric scores S = {s1, . . . , sm} of m different charging
services.

F(S) = 1 − 2 · s(S)

H − L
(6)

Since QoS and QoE metrics from Eq. 1 - (5) are defined within [ 0, 1], the fairness index
simplifies to F(S) = 1 − 2 · s(S).

Queuing approach for electric vehicle charging

In communication networks, multiple information flows are sent simultaneously through
the same shared physical link, e.g. using time-division or frequency division multiplexing.
For packet switching, often queuing models are used in order to send packets over a net-
work of nodes. Each node holds a queue with packets awaiting transmission to another
node. Whenever the communication link is free, a scheduler selects the next packet in
the queue, normally based on first-in-first-out policy. In order to establish a certain QoS,
other policies can be applied such as earliest deadline first, least laxity first, weighted fair
queuing or packet prioritization.

In this paper, each EV is represented by a flow and the EV can request charging cur-
rents by scheduling packets to the power grid in discrete time slots, where the packet size
psize equals the EVs’ minimal adjustable charging current. This guarantees that EV bat-
tery constraints and communication protocol limitations can be considered. For example,
if the battery of an EV limits the charging power to 6.9 kW (10 A on three phases) and
the charging current can vary in discrete 3 A steps (1 A per phase) - like defined in IEC
61851-1 - the EV charging service needs to queue 10 packets for each phase. Without loss
of generality, we describe the packet allocation for a balanced three-phase power system,
hence only a single phase is considered.

The shared network is the underlying power distribution grid whose bandwidth is lim-
ited by the available capacities. In order to not overload grid assets, a Scheduling Unit
(SU), which contains the queuing logic, is placed at each limiting cable or transformers.
Because power distribution grids are typically operated as radial networks, the single SUs
span a tree. Each EV requests charging current packets to the nearest connected SU, typ-
ically at the supplying cable or transformer. The requested packets pass the network tree
towards the root node as depicted in Fig. 2a. Thereby, each SU only forwards as many
packets to the next SU as the local capacity limit allows. Finally, the root node, e.g. respon-
sible for the transformer, assigns its available capacity by returning the packets top-down
to the EVs, like depicted in Fig. 2b. Note that voltage violations are treated by a feedback
Q(V )-controller as described in “Simulation setup” section.

In order to determine the available capacity of a shared link, we propose to measure
parts of the distribution grid, and from that infer the available charging capacity of the
next time slot using short-term forecasts. The bandwidth calculation can also include an
approximation of grid losses, which in turn reduces the actual available charging capacity
at the end of the radial network. We assume that applying the allocation algorithm in
time slots of one minute is sufficient for charging service allocation and fast enough for
reasonable load management in the distribution grid. In addition to the pure network
related capacity limitations, the root node can participate in demand response programs
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Fig. 2 Hierarchical composition of EVs and SUs for the queuing approach

or act as a market agent, which artificially limits the aggregated charging power based on
market signals.

The charging capacity Ci(t) of an EV i in time slot t ∈ N is calculated by Ci(t) =∑
p∈Ai(t) psize, where Ai(t) is the set of packets that is assigned to the EV by the SU.

Because EVs that still have packets in the queue might leave before the next iteration, all
queues are flushed afterwards. Finally, the allocation algorithm is executed again for the
next time slot, starting with packet requests from the EVs.

A reliable and fault-tolerant Information and Communications Technology (ICT) archi-
tecture is required for the aforementioned procedure. In case of communication loss
between EVs and SUs, the EVs moves to a fail-safe mode while pausing ongoing charg-
ing processes to avoid damaging the power grid. Because the SUs are logical units that do
not store state information beyond a single time slot, SU instances can be executed in a
cloud environment, which allows fast fault recovery. The communication effort between
entities scales linearly with the number of involved EVs and SUs. In each time slot, EVs
(leaf nodes in the tree topology) need to send the requested packets along the path of
SUs (inner nodes) to the root node, which finally returns them to its origins. Because
each EV/SU sends its packet requests only once back and forth in each time slot, the
total communication cost can be approximated with O(n + m) where n is the number
of inner nodes and m the number of leaf nodes. Note that this paper does not target pri-
vacy nor security issues like packet injection, that may arise with the operation of ICT
infrastructure.

Queuing policies

In the following, we will discuss different simple scheduling policies and, finally, explain
the proposed dynamically weighted fair queuing approach.

First Come First Serve (FCFS) The typical implementation of a queue is the first-in-
first-out strategy, which means the first element that reaches the queue will be the first
element that will be processed. In the case of EV charging, we consider a first come first
serve policy. The EV that arrives earlier will be served first with the maximum possible
charging current. If there is available capacity left, the EV that arrived next will be served
and so forth. Even though considering only the arrival time of EVs for the charging ser-
vice allocation is simple to realize and secure against malicious user inputs, the flexibility
(required energy and residual charging time) of the EV is not considered at all with this
scheduling policy.
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Earliest Departure First (EDF) Contrary to the FCFS scheduling, the earliest dead-
line first policy executes tasks in the order of the nearest deadline. The idea behind this
method is to process the more critical tasks first under the assumption that in average
each task takes similar execution time. For EV scheduling, earliest deadline first turns into
earliest departure first, only considering the departure time of the EV during the schedul-
ing. Similar with FCFS, this policy does not consider the actual required energy and all
packets of the same EV are scheduled with the same priority, which results in maximum
charging rates for only a few EVs.

Least Laxity First (LLF) The priority of a task is inversely assigned based on its slack
time, which is equal to the remaining extra time after job execution until its deadline.
Note that the slack time can even be negative in case the job cannot finish in time, which
however does not change the execution order. The slack time s(t) at any time t is calcu-
lated by s(t) = d − r(t) − c(t), where d is the deadline, r(t) the release time since start
and c(t) the residual computation time at time t. In EV charging, the departure time is
equal to the deadline (d = tdep), the time spent within the available charging time equals
the release time (r(t) = t − tarr) and the required charging time with assumed maximum
charging power equals the residual computation time (c(t) = Ereq−E(t)

Pmax
). Note that for cal-

culating the residual charging time constant current charging with maximum charging
power is considered.

Proportional (PROP) Proportional fair scheduling policy guarantees that every partic-
ipant receives a fair share of a limited resource proportional to its anticipated resource
consumption. Proportional fairness is discussed in literature many times with regard to
the expected charging power (Ardakanian et al. 2013; Ardakanian et al. 2014; Kong et al.
2016; Shi and Liu 2015; Rudnik et al. 2020), hence we also define proportional allocation
based on the charging power requests of the EVs. Note that in our solution proportional
fairness is a local property between EVs connected to the same SU. Capacity limitations
along the supply grid can prevent global proportional fairness.

Weighted Fair Queuing (WFQ) Packet generalized processor sharing (Demers et al.
1989) can be approximated with weighted fair queuing and is used to share a resource’s
capacity fairly between flows, while the weight determines the fraction of capacity that
each flow receives. Using the WFQ approach in network scheduling, each of N packet
flows that passes a shared link is managed by one separate queue i with a specified weight
wi ≥ 0, which is determined by the priority of that flow. Every time a new packet p is
received, its virtual finish time is computed by

pvirtFinish = virtStarti + psize
bi

, (7)

where virtStarti is the last virtFinish time of the same queue i (or the current time if the
queue is empty) and bi is the assigned bandwidth to that queue. The bandwidth is cal-
culated by bi = wi∑N

j=0 wj
· R, using the weights of all single queues wj and the maximum

bandwidth R of the shared link. Whenever the scheduler is able to send a packet over
the shared link, it selects the queue that contains the packet with the smallest virtFinish
time and sends the first packet from that queue. Note that WFQ allocates the resource
proportionally fair to the weight of each queue (flow) independent of the packet sizes.
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The pseudo code for requesting packets at a SU is given in Algorithm 1 and the packet
assignment is shown in Algorithm 2. In both cases, Qi denotes the packet queue of
EV/SU i = 1..N , getQueue(p) determines the queue of packet p, getNextQueue() returns
the queue with the smallest virtFinish time and nextPacket(Q) returns the packet with the
smallest virtFinsh time of queue Q.

In : Set of requested packets P
Out: Set of aggregated request R
forall the p ∈ P do

Qi ← getQueue(p);
pvirtFinish ← (7) and (8);
Qi ← Qi + p;

end
R ← ∅;
while local capacity limit not
reached do

Qi ← getNextQueue();
R ← R ∪ {nextPacket(Qi)};

end
return R

Algorithm 1: Request aggregation.

In : Set of assigned packets P
Out: Assignments Ai for i = 1..N
∀i = 1..N : Ai ← ∅;
C ← ∑

p∈P psize;
while min(C,local capacity limit) not
reached do

Qi ← getNextQueue();
Ai ← Ai ∪ {nextPacket(Qi)};

end
return (Ai)i=1..N

Algorithm 2: Packet assignment.

In networking the packet size psize denotes the number of bits of the packet and the
bandwidth defines how many bits can be transmitted per second (bit/s). For EV charging,
the packet size is given by the minimum adjustable charging current. Because the requests
are only valid for a discrete time �, the actual packet size can be seen as the electrical
charge (Ah) that needs to be transmitted by the grid. Analogously, the bandwidth is the
current carrying capacity of the grid in ampere.

In statically WFQ, the weight of one charging process is once determined at the begin-
ning of the individual charging process when the EV arrives at the charging station.
Similar to Zhou et al. (2013), the weight is based on the comparison of the required SoC
with the current SoC of the EV. The weight of EV i is calculated by wi = max(SoCtarget −
SoC(tarr), 0) ·10+1. EVs that require a full charge receive weight of 11 and EVs that arrive
at home with the required SoC in the battery obtain a weight of 1, hence will only charge
with minimum priority.

Dynamically Weighted Fair Queuing (DWFQ) By dynamically changing the weights
of the flows, WFQ can be utilized to control the QoS for each flow. In contrast to
statically weighted fair queuing in Zhou et al. (2013), the dynamically weighted fair queu-
ing approach considers both aspects of the charging service namely, available charging
time and required energy. Because for WFQ the weights wi(t) must be ≥ 0, we can-
not use the slack time to dynamically estimate the weight like in LLF policy. Therefore,
we divide the remaining charging time c(t) by the remaining time until departure like in
Eq. 8. Charging services that theoretically can finish in time receive a weight ≤ 1, whereas
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others have a weight greater than 1.

wi(t) =
(

Ereq−E(t)
Pmax

)
tdep − t

(8)

Evaluation
We first explain the underlying experiment setup and assumptions before analyzing the
obtained results with regard to QoS and fairness.

Simulation setup

To evaluate the proposed algorithm in a realistic environment, we extract charging pat-
terns from a mobility survey, state our grid and EV assumptions and define future
charging penetration and grid limitation scenarios.

EV charging pattern and battery model

Nowadays, the driving behavior of people with EV differs to combustion engine drivers,
e.g., due to smaller range of the vehicles, limited availability of charging facilities or
because EVs are typically used as second car. Nevertheless, we assume that most people
will not (like to) change their driving behavior drastically when switching from combus-
tion engine vehicles to electric vehicles in the future. Similar to Danner et al. (2021),
we take data from a mobility survey as basis for EV charging behavior, which provides
one week of travel behavior in Germany (Eisenmann et al. 2017). This data record con-
tains 1757 surveyed households and more than 2000 individual trips in which the car
is the main means of transportation. Each registered trip consists of trip sections with
destination, time of departure and arrival, and distance covered.

Because we focus on EV home charging in residential sub-urban area, we filter the sur-
vey data to fit to the regional type and aggregate all trip sections such that each trip starts
and ends at home. As a result, we obtain the arrival time at home tarr , the departure time
from home tdep and the distance d of the last trip before arriving at home. Because of
convenience reasons of the EV driver, we assume that the vehicle will not be charged if
the stay between two trips is less than 1 hour, hence the corresponding distance is added
to the next trip. In order to get the required energy for the charging service, we assume
that all EV drivers want to recharge the consumed energy of the last trip during their stay
at home. An exemplary driving pattern that leads to the charging service requirements is
depicted in Fig. 3. Assuming a battery storage capacity of 40 kWh and an average energy

Fig. 3 Exemplary EV charging pattern. During the highlighted charging service, energy for the driven 42 km
need to be charged
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consumption of 17 kWh per 100 km, the required energy of the charging service, which
is upper limited by the battery capacity, can be estimated using Eq. 9.

Ereq = max(40kWh, d · 17kWh
100km

+ Em) (9)

In case the battery capacity of an EV is not big enough to cover the whole trip distance,
we assume that the driver visits a public charging station during the trip, where only the
required additional energy is charged. Hence, with this worst case assumption the EV will
arrive at home with an empty battery and requires a full charge cycle. The departure times
are assumed to be strict deadlines, meaning a not fully charged EV at departure time that
missed to charge energy of Em kWh requires more energy in the next charging service,
respectively.

The number of charging services per EV ranges between 0 and 15 per week. The
mean parking duration is approximately 16.6 h and the mean driving distance is equal to
39.1 km. As can be expected, many commuting EVs reach home between 17:00 and 18:30
and need to leave between 6:30 and 8:00 on the next day. In addition to commuters, the
data set also contains 13.2% shorter charging stops with less than 3 h, which arrive almost
with normal distribution around noon.

One of the most common charging models is constant-current-constant-voltage charg-
ing, in which increasing battery SoC leads to reduced charging current in the constant
voltage phase, also kown as battery saturation phase. This effect is typically observed with
charging rates above 50 kW, which are not possible for EV home charging. Therefore, we
model the battery charging as constant current load. Furthermore, the charging efficiency
is set to 95% and the minimum adjustable charging current is given by 3 A, similar to the
control capabilities in IEC 61851-1.

Power grid and simulation scenarios

The evaluation is carried out on the simulated IEEE 906 low voltage test feeder. This typ-
ical European low voltage grid, shown in Fig. 4, connects 55 households on a three phase
system. In our power flow simulation in PyPower within the mosaik co-simulation envi-
ronment, all households are connected balanced to all three phases. We assume that each

Fig. 4 IEEE 906 low voltage test feeder, with the transformer located in the top left side (red bigger circle)
and 55 connected households (blue smaller circles)
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Fig. 5 Voltage controller according to VDE-AR-N 4100

household owns two EVs that can charge in parallel at two 11/22 kW wall-boxes and
the aforementioned charging patterns are randomly assigned to the EVs. The very small
confidence intervals of 10 independent simulation runs are dropped in “Analysis” section.

In the baseline scenario without EV charging, the low voltage grid has a peak loading
of 60.5 kVA, which is substantially smaller than the totally maximum installed charging
capacity of 2.4 MVA. Nevertheless, uncontrolled charging with 22 kW and the afore-
mentioned charging patterns results in a peak load of approximately 312 kVA due to the
simultaneity factor. Because this would increase the peak load by more than 5 times,
which applied to many low voltage grids can cause critical peak loads in the superior
power grid infrastructure, and additionally causes voltage issue (details in Table 1), we
artificially limit the maximum loading at the transformers’ SU to 100 % of the baseline
peak load.

The proposed queuing mechanism acts only as load management. Voltage violations
are counteracted by Q(V ) and P(V ) droop curves like in Fig. 5. The decentralized voltage
controller changes the reactive power behavior of the rectifier and in critical situations
even reduces the real power demand of the EV. Note that in our simulation the power fac-
tor is configured to be always greater than 0.9 to avoid losses and keep the reactive power
ratio in the low voltage grid in a reasonable range. Therefore, the real power demand is
slightly reduced between 0.93 and 0.97 p.u. (1.03 and 1.07 p.u. respectively) in order to not
exceed the allocated current capacity. Furthermore, the reactive power decreases with the
real power demand below 0.93 p.u. in order to stay with the defined minimum power fac-
tor. Although this voltage controller might reduce the actually obtained charging capacity
for EVs at critical locations in the grid, LLF and DWFQ restore fairness between different
charging services by dynamically recalculating the weights. In order to avoid osculations,
we apply a first-order lag filter to the control signal changes.

P(t) = k · P̂(t) + (1 − k) · P(t − 1)

Q(t) = k · Q̂(t) + (1 − k) · Q(t − 1)

P̂(t) and Q̂(t) are the target signal value from the voltage controller limited by the assigned
charging current from the queuing mechanism. The factor k must be configured to avoid
oscillation, but still reach the target signal value within desired time. Our co-simulation
steps with � equal to 1 min and the target value is nearly reached after 5 steps using
k = 1 − 1

e ≈ 0.632 to provide a fast enough reaction.
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Fig. 6 Control flow in the co-simulation, where dashed lines are time delayed

The control flow of the co-simulation, visualized in Fig. 6, first executes the queuing
mechanisms to obtain the assigned charging current I. Secondly, using the locally mea-
sured voltage U the voltage controller calculates the real and reactive power values of the
charging service P̂(t) and Q̂(t). Next, the first-order lag filter is applied before the param-
eters are sent to the EV model, which passes the values to the power flow simulator. The
calculated SoC of the EV, available current capacity and node voltage form the grid close
the control loop, which is executed every 1 min.

Analysis

All the following results are obtained from a 7-day week simulation. During this simulated
week, the individual EVs require between 1 and 13 charging services, in average 5.06. The
mean energy demand of a charging service is 6.68 kWh, which is approximately 16.7%
of the assumed battery capacity. The total energy demand of all 557 charging services is
13.2% greater than the total demand of the households.

QoS, QoE and fairness index of the different queuing policies

First, we analyze the obtained metric values for the quality of service and experience of
the different queuing policies, where Fig. 7 shows box plots of all 557 charging services.
All policies achieve high QoS1, QoE1 and QoE2 values that are close to one for most charg-
ing services, however the number and variation of outliers varies significantly among the
queuing policies. In the charging service metric QoS1, FCFS, PROP and WFQ have slightly
lower averages due to many outliers, and there are even some charging services that do
not receive any service at all. That is the case, when charging services are blocked by other
charging service that actually provide more flexibility to be moved to a later time. In all
three metrics (QoS1, QoE1 and QoE2), EDF and DWFQ achieve maximum quality with
the exception for QoE2 where some charging service are rated with poor QoE because a
fully charged battery is not enough to reach the next destination. The in-cooperation of
departure times plays an important role for charging service allocation due to the better
performance of EDF, LLF and DWFQ in these three metrics.

The two metrics QoS2 and QoS3, which target QoS during the charging time (starting
time and power variation), show a different picture. For both, the average value of the
first three policies (FCFS, EDF and LLF) is noticeable lower than with the last three poli-
cies. This is due to the fact that the later three also enable variable charging currents,
whereas the first three policies operate as purely time division multiplexing. Blocked by
other services the start times of charging services are delayed, which affects QoS2, and
charging interrupts of newly arriving EVs increase the variation in charging power, which
is reflected in QoS3.
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Fig. 7 QoS and QoE metrics of the different queuing policies for all 557 charging services. The box plots
show the result distribution among the charging services and the circle denotes the average value. Below
the box plots, the achieved fairness index F is given. 22 kW wall-boxes with 100% transformer limitation. Note
that for QoS1, QoE1 and QoE2 most of the charging service have very high service quality, hence the boxes
are very tiny near to 1

Below the box plots in Fig. 7, the fairness index F is depicted for each metric and policy.
As can be seen, only the proposed DWFQ policy is among the best three for each metric,
whereas EDF and LLF achieve a high fairness index for most metrics except QoS2. Again,
this tracks back to the time division behavior of both policies. Figure 8 compares the mean
quality of service and experience obtained with the fairness index. The spider plots clearly
show that PROP, WFQ and DWFQ outperform the other three policies in terms of mean

Fig. 8 Mean QoS and QoE metric values and fairness index of different queuing policies. 22 kW wall-boxes
with 100% transformer limitation
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value of all quality metrics. Additionally, DWFQ achieves good fairness indices in most
metrics, which makes it a good candidate for fair charging service allocation.

Note that similar results with less differences between the queuing policies are obtained
with a transformer limitation of 120% and 140% or 11 kW wall-boxes, respectively. It can
even be expected that with unlimited transformer (and cable) limitation, all policies work
similar, since all charging requests can directly be served. Nevertheless, the best queuing
policy should be chosen in order to ensure high quality of charging service and fairness
even with highly limited scenarios.

QoS, QoE and fairness index during the charging service

As already identified in the last section, the quality of service and experience during the
charging services differs quite a lot between the queuing policies. Figure 9 depicts the
evolution of the QoE1 mean value and fairness index during charging. Note that for the
x-axis all charging services are normalized to the range between arrival tarr and departure
time tdep. This makes them comparable on the same time scale, even though the charging
services have different duration and do not take place at the same time. From Fig. 9a it can
be seen that the mean QoE1 value of all policies evolves quite similarly during charging.
Compared to the other policies, FCFS has a slightly lower value during the first half of the
charging services, because newly arrived EVs are blocked until all previous charging ser-
vices are fully served. Only EDF, LLF and DWFQ finally reach the maximum at departure
time. Because EDF and LLF schedule only maximum charging power to the most critical

Fig. 9 Mean QoE1 metric value and fairness index during the charging services using different queuing
policies. All charging processes are normalized to the range [ tarr , tdep]. 22 kW wall-boxes with 100%
transformer limitation
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Fig. 10 Loading at the transformer during one day, limited to 100% of the baseline peak load. EV charging
with 22 kW using the DWFQ policy

charging processes with regard to time and remaining available charging time, both reach
the maximum metric value earlier than DWFQ. In contrast, DWFQ focuses on a fair allo-
cation throughout the whole charging process, which results in a higher mean quality
metric at the first half of the charging service. Despite the fact that DWFQ has a slightly
lower mean QoE1 value at the last third of the charging service, most of the time this pol-
icy dominates the fairness index shown in Fig. 9b except at the very end. With a higher
fairness index during the first half of the charging service, EVs are served more fairly in
case they need to leave earlier than the planned departure time. Furthermore, it can be
expected that DWFQ (and also WFQ) are more robust against malicious user inputs (e.g.
incorrect departure times), because opposite to EDF all charging services always obtain a
fair portion of the available charging capacity according to their weight.

Impact of the charging service on the low voltage grid

Regardless of which queuing policy is used to distribute the available charging capacity,
the load at the transformer is smoothly limited to the configured threshold, except for a
few short violations as shown in Fig. 10. Table 1 summarizes the achieved mean and min-
imum SoC at departure time (QoE1) of the different queuing policies and also provides
grid statistics extracted from the power flow simulation. We take the minimum of the 10-
minutes average voltage values (as defined in EN 50160) at all buses as an indicator for the
voltage impacts of the different queuing policies. The grid losses are calculated by com-
paring the charged energy of all charging services with the additional energy that passes

Table 1 Charging statistics and impact on the low voltage grid of the different queuing policies

Policy Mean SoC (QoE1) Min SoC (QoE1) Min Uavg
10min Grid losses

FCFS 99.76% 77.09% 217.91 V 7.35%

EDF 100% 100% 216.68 V 7.44%

LLF 100% 100% 216.35 V 7.42%

PROP 99.78% 69.44% 220.94 V 6.54%

WFQ 99.76% 81.99% 220.19 V 6.51%

DWFQ 100% 100% 219.14 V 6.58%

Baseline - - 231.55 V 0%

uncontrolled 100% 100% 176.69 V 12.79%

U-control 100% 100% 203.67 V 11.88%

22 kW wall-boxes with 120% transformer limitation. Uavg
10min is the 10-minute average voltage value according to EN 50160. Top

three scores are marked boldface
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the transformer. All queuing policies reach an acceptable voltage level, but the three poli-
cies with variable charging rates improve the voltage level by more than 2 V compared
to the other policies. Similarly, grid losses are reduced by approximately 1% (approxi-
mately 37 kWh). This is due to the fact that the total charging capacity is shared among
more charging services, with each receiving a smaller share, thereby reducing the voltage
drop and grid losses. Note that this study does not consider that EV charging equip-
ment might have lower efficiency when not utilized with the rated power. Values from the
baseline scenario without charging (Baseline), uncontrolled charging (uncontrolled) and
only using the aforementioned local voltage controller (U-control) are given in Table 1 for
comparison.

Conclusion and future work
This paper presented a set of QoS and QoE metrics that can be used to evaluate EV charg-
ing services. Among others, the charged energy, charging power variations and whether
the next destination can be reached with the charged energy are considered. Secondly, we
have proposed a hierarchically scalable charging allocation mechanism that uses queu-
ing systems and can apply various queuing policies, e.g. first come first served, earliest
departure first or least laxity first. The proposed charging solution can capture charg-
ing restrictions coming from the battery or legacy communication protocols between the
wall-boxes and the EV. Three of the analyzed queuing policies provide decent QoS and
QoE in all five metrics while achieving a better overall fairness compared to the other
policies in our co-simulation. Due to the variable charging rates and the dynamic recal-
culation of the weight (using the remaining available charging time and the remaining
required energy), the proposed DWFQ is among the best and additionally has only small
negative effect on voltage levels and grid losses. Finally, all charging services in our sim-
ulation - extracted from a mobility survey - are sufficiently served with a transformer
power limitation of 100% of its normal baseline load without EV charging. Therefore, we
have demonstrated that with an advanced charging service allocation the demand of high
EV penetration can be met with the same peak load as the baseline scenario without EV,
however QoS and fairness highly depend on the chosen allocation policy.

In the future, we want to perform a sensitivity analysis on how malicious user inputs
impact the QoS and fairness and evaluate how incentive mechanisms can improve the
impact of wrong inputs. Additionally, we plan to compare the discussed hierarchical
charging mechanism with a fully decentralized probabilistic allocation protocol that uses
multiple access control mechanisms from the networking domain.
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