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A B S T R A C T

Buildings constitute more than 40% of total primary energy consumption worldwide and are bound to play
an important role in the energy transition process. To unlock their potential, we need sophisticated controllers
that can understand the underlying non-linear thermal dynamics of buildings, consider user comfort constraints
and produce optimal control actions. A crucial challenge for developing such controllers is obtaining an
accurate control-oriented model of a building. To address this challenge, we present a novel, data-driven
modeling approach using physics informed neural networks. With this, we aim to combine the strengths of
two prominent modeling frameworks: the interpretability of building physics models and the expressive power
of neural networks. Specifically, we use measured data and prior information about building parameters to
realize a neural network model that is guided by building physics and can model the temporal evolution of
room temperature, power consumption as well as the hidden state, i.e., the temperature of building thermal
mass. The main research contributions of this work are: (1) we propose two new variants of physics informed
neural network architectures for the task of control-oriented thermal modeling of buildings, (2) we show that
training these architectures is data-efficient, requiring less training data compared to conventional, non-physics
informed neural networks, and (3) we show that these architectures achieve more accurate predictions than
conventional neural networks for longer prediction horizons (as needed for effective control). We test the
prediction performance of the proposed architectures using both simulated and real-word data to demonstrate
(2) and (3) and argue that the proposed physics informed neural network architectures can be used for
control-oriented modeling.
1. Introduction

According to the recent IPCC report on climate change, global
temperature is expected to reach the 1.5 ◦C threshold in the next
decades [1]. In the fight against climate change, the energy and power
sector is going through numerous changes such as phasing out of
coal-based generation, the addition of renewable energy sources and
decentralization of generation and storage units. Concurrently, there is
a growing need for efficient and flexible energy consumption that can
accommodate the energy generated by intermittent renewable energy
sources such as wind and solar power [2]. An important sector for
providing this energy efficiency and flexibility is the building sector. As
of 2016, buildings accounted for 40% of total primary energy consump-
tion worldwide and around 55% of total electricity consumption in the
EU [3]. With these numbers expected to rise over the years, efficient
control of building energy consumption will play a crucial role in the
energy transition process.

∗ Corresponding author.
E-mail address: gargya.gokhale@ugent.be (G. Gokhale).

Significant research has been carried out in the context of control
algorithms for energy management in buildings, ranging from simple
Rule-based Controllers to advanced controllers like Model Predictive
Control (MPC) and Reinforcement Learning (RL) [4]. In MPC, a physical
model of the system is used to anticipate the future behavior of the
system and optimize its performance [5]. This enables MPC-based
controllers to be sample efficient and produce interpretable control
decisions. However, the accuracy of MPC is closely related to the
fidelity of the model, which is often difficult to obtain for real-world
scenarios [6]. Contrary to this, data-driven controllers like RL, work
directly with past interactions between the system, without the need for
explicit physics knowledge. Although these RL-based controllers have
shown promising results, they present a black-box solution that requires
large amounts of training data. Additionally, in previous work such
as [7], RL controller was trained using a physics model-based simulator
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306-2619/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.apenergy.2022.118852
Received 7 December 2021; Received in revised form 11 February 2022; Accepted
 25 February 2022

http://www.elsevier.com/locate/apenergy
http://www.elsevier.com/locate/apenergy
mailto:gargya.gokhale@ugent.be
https://doi.org/10.1016/j.apenergy.2022.118852
https://doi.org/10.1016/j.apenergy.2022.118852
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apenergy.2022.118852&domain=pdf


Applied Energy 314 (2022) 118852G. Gokhale et al.

i
t
p
r
a
a

2

r

s
p
p
t
o
a
a
a
s
m
a

c
i
m
c
c
s
a
R
s
t
p
a
t
b
d
o
t
i
o
3
s
b
t
w

to ensure that training data obtained was sufficiently diverse and to
avoid taking harmful exploration actions.

This makes obtaining accurate building models a crucial require-
ment for developing better control algorithms. A variety of modeling
techniques have been studied previously and are broadly classified
into physics models (white box, gray box) and data-driven models
(black box) [8]. The physics models involve solving a system of partial
differential equations based on the underlying physical laws, commonly
achieved using numeric solvers such as EnergyPlus, Modelica, as pre-
sented in, e.g., [9,10]. The use of such models however has been limited
in the control domain, primarily due to the high computational cost
associated with solving the underlying system of partial differential
equations [9]. Alternatively, a lumped parameter model using resistive
and capacitive networks is used for control-oriented modeling. With
this framework, different thermal components in a building are mod-
eled using an RC network and simplified to obtain a lower order model
that is easier to solve. However, even with these approximations, the
models obtained are highly specific and require significant modeling
effort as demonstrated in [11].

Data-driven models circumvent these modeling challenges by re-
lying completely on obtained data. Previously, techniques such as
ARIMA, Genetic Algorithms, Neural Networks, etc., have been studied
and have shown good modeling capabilities [8,12]. Yet, as discussed
in [8], these techniques have their own challenges in the form of huge
training data requirement and lack of interpretability.

To get the best of both these worlds, we propose to incorporate
self-learning, physics guided models with model-based reinforcement
learning algorithms to develop interpretable control agents in a data-
driven manner. As a first building block, we propose to work with
Physics Informed Neural Network architectures to learn physically
relevant control-oriented models of real-world systems. This is achieved
by explicitly providing information related to the underlying physics of
the system to a deep neural network during the training procedure.

The main contributions of this paper can be summarized as:

(1) We propose two new variants of physics informed neural net-
work architectures (Section 3) for control-oriented modeling of
thermal behavior of a building and validate their accuracy using
simulated data (Section 5.1).

(2) Based on real-world cold storage data (Section 4) we show that
these physics informed neural networks perform better than con-
ventional, non-physics informed neural networks at predictions
for longer time horizons (Section 5.3).

(3) We further show that training these physics informed neural
network architectures is a data-efficient process, requiring less
training data than conventional, non-physics informed neural
networks (Section 5.2).

While we acknowledge that the general concept of using physics
nformed neural networks models in itself is not new (as indicated
hrough the literature review in the subsequent Section 2), the specific
hysics informed neural network model we have designed (incorpo-
ating basic constraints based on a simple RC model) is. Through
forementioned experiments we demonstrate our model’s feasibility
nd practical applicability, based on experiments using real-world data.

. Related work

This section presents a non-exhaustive review of previous work
elated to our paper. We specifically focus on

(i) Building Control and Modeling Algorithms and
(ii) Physics Informed Neural Networks.
2

h

2.1. Building control and modeling

Extensive research has been carried out previously in this domain,
with work such as [4,13] presenting exhaustive reviews of different
control algorithms. MPC has emerged as an established control tech-
nique with works such as [14–16] presenting case studies for practical
implementations in real-world buildings. These works show that MPC-
based control strategies can lead to cost savings of about 20% compared
to the existing rule-based control algorithms. An MPC strategy involves
a physical model of the system and a set of constraints to formulate
a receding horizon optimization problem that is solved at every time
step to obtain optimum control actions [5]. Authors in [15,16] uti-
lize a gray-box RC model for the buildings. This leads to a bilinear
building model and results in a non-linear optimization problem that
can still be solved with reasonable accuracy using a sequence of linear
programs [16]. Solving this optimization problem is computationally
expensive and can limit the practical applicability of MPC controllers.
Besides this, MPC controllers are expensive to obtain as indicated
in [16], whose authors conducted a cost–benefit analysis of using MPC-
based control strategies in real-world buildings. They concluded that,
while MPCs can lead to a decrease in operating costs, the investment
costs are much higher, primarily due to higher costs associated with
the modeling of buildings, thus prohibiting widespread commercial
application. Further, these building models are seldom scalable and
need to be developed for individual buildings. E.g., in [11], authors
discuss the model identification process for a real-world building and
present a procedure for estimating building parameters. This proce-
dure leads to models with accurate multi-step temperature predictions
(0.3◦C prediction error). However, this identification process involves
olving a quadratic program to obtain good initial estimates of building
arameters, followed by solving a multi-step prediction optimization
roblem to obtain the final model. This highlights the high computa-
ional requirements for obtaining a good building model and the lack
f scalability. Additionally, the modeling approaches presented above
pproximate the non-linear thermal dynamics of the building using
first-order Euler discretization. As presented in [17], such explicit

pproximations can lead to inaccurate buildings models especially in
cenarios involving low data sampling rates. This leads to approximate
odels which can be susceptible to errors and lead to biased control

ctions, as discussed in [9,18].
Data-driven control techniques circumvent aforementioned short-

omings of MPC by completely relying on collected data as presented
n [19]. Owing to the recent success of works such as [20], Reinforce-
ent learning-based controllers are gaining importance in developing

ontrollers for buildings [21]. RL-based controllers are self-learning
ontrollers that use data collected from past interactions between the
ystem and the controller to learn the dynamics of the system and
chieve a pre-defined objective [22]. Works such as [7,23] have studied
L-based controllers in the context of building control and show that
uch RL controllers can lead to 5–12% energy savings compared to
he existing rule-based controllers. Additionally, [24] compares the
erformance of MPC and RL controllers to show that RL controllers
re able to outperform a linear MPC-based controller for two different
est scenarios. Though these works indicate promising results for RL-
ased controllers, they also highlight existing challenges in real-world
eployment of RL. These include large training data requirement, lack
f interpretability, need for safe explorations, etc. [25]. E.g., in [23],
he authors use one year of data for training the RL controller us-
ng random explorations. Similarly, in [7], the authors use 2 months
f temperature data for obtaining a training data size equivalent to
000 simulated trajectories. This data intensive nature and need for
ignificant exploration represents a common challenge faced by RL-
ased control strategies. Hybrid control approaches have been studied
o mitigate some of these problems by combining domain knowledge
ith these RL controllers [18,26]. E.g., in [26], the authors present a

ybrid control strategy by merging model-free and model-based control



Applied Energy 314 (2022) 118852G. Gokhale et al.

a
G

m

strategies. They propose an aggregate-and-dispatch control framework
for a cluster of water heaters in which an MPC controller calculates
energy set-points for the cluster and the dispatch is carried out based
on a fitted Q-iteration RL strategy.

We present a different approach, where instead of using a model
of the system directly, we focus on learning this model using the
available data and then using it in a model-based RL approach. While
different techniques for this control-oriented modeling problem have
been studied previously, these techniques were focused on creating
convex, linear (or bi-linear), time invariant models compatible with
MPC formulation and available optimization solvers [27,28]. In con-
trast, our objective in this work is to learn a low dimensional, latent
space dynamics model of the system to use it in RL, where these
latent representations can be used to learn optimum control policies
as demonstrated in [29,30]. Concretely, we propose using Physics
Informed Neural Network architectures [31].

2.2. Physics informed neural network architectures

As introduced in [31], Physics informed neural networks represent
a novel class of neural network architectures where prior knowledge
about the system is encoded explicitly in the architecture. This work
is similar to [32], where inductive biases based on the underlying
physics laws are coded directly into the network. Several works have
built upon this idea and have shown promising results in obtain-
ing approximate solutions for difficult physics problems such as two
body mechanics [33], heat transfer [34]. In [31,34], the encoded
physics knowledge is strictly enforced on the predictions of the neural
network and assumes the availability of complete physics. Differing
slightly from this approach, in [33], the authors enforce partially
known physics and learn remaining physics parameters using the avail-
able data. These approaches show that trained models are better at
extrapolating and require fewer training samples. Consistent with these
works, we propose using physics informed neural networks for model-
ing the thermal behavior of a building. This is an emerging domain
in building energy modeling and control, with previous works such
as [35–37] presenting different approaches for providing prior physics
knowledge to conventional black-box algorithms. In [35], the authors
present a Physics-informed ARMAX method for modeling buildings
and using these models with MPCs. The results indicate good perfor-
mance of MPCs based on this model, including significant training
sample efficiency attributed to the prior knowledge that is provided
to the physics-informed ARMAX models. In [36], the authors present
a physically consistent neural network architecture comprising of a
physics-informed module in parallel to a black box module. With this
approach, the authors show good prediction performance for longer
prediction horizons as compared to a gray-box model. In [37], the
authors present a physics-constrained deep learning model for con-
trol oriented model of a commercial building. The authors propose
a structured recurrent neural dynamics model that models the non-
linear thermal dynamics of the building using individual linear neural
blocks with constrained eigenvalues. The authors show that such an
architecture is data efficient, requires less training time and gives
state-of-the-art prediction results for the case of large office buildings.

Differing from the works presented above, we encode the physics di-
rectly by using neural network outputs to calculate additional physics-
based losses. Additionally, we propose to extract low-dimensional la-
tent representations which correspond to the hidden states of the
system and use prior physics knowledge to guide them towards a
physically relevant space. This ensures that the obtained latent repre-
sentations are disentangled, as opposed to the unsupervised learning
cases discussed in [38,39]. Once trained, these physics informed neural
network models can be used with model-based RL algorithms such
as MuZero [29], Dreamer [30] to obtain optimum control actions for
3

building control.
3. Mathematical modeling

With a focus on obtaining control-oriented models, we first model
the thermal behavior of the household as a discrete-time Markov De-
cision Process (MDP), a commonly used sequential modeling frame-
work [22]. Subsequently, we train our physics-informed neural net-
works to predict the ‘next state’ given the ‘current state’ and ‘action’.
This modeling approach has been discussed in this section along with
the formulation of Physics informed neural networks.

3.1. Problem formulation

A Markov Decision Process (MDP) is a commonly used framework
to model sequential decision making problems [22]. An MDP consists
of 4 main components: state space (𝐗), action space (𝐔), state transition
function (𝑓 ) and reward function (𝜌). In a fully observable setting, the
transition function 𝑓 ∶𝐗 × 𝐔 × 𝐖 → 𝐗 represents the true mapping at
time step 𝑖, between the current state (𝐱𝑖), the current action (𝐮𝑖), an
exogenous parameter (𝐰𝑖) and the next state (𝐱𝑖+1) of the system and
is given as:

𝐱𝑖+1 = 𝑓 (𝐱𝑖,𝐮𝑖,𝐰𝑖), (1)

Here, 𝐰𝑖 represents the stochasticity in the system and is assumed as
an independent random variable. The transition function (𝑓 ) represents
the true dynamics of the system and to obtain a control-oriented model,
it is necessary to approximate this transition function. For data-driven
methods, this reduces the problem into a supervised learning problem
with the objective of estimating the transition function using a labeled
set of state transitions  = {(𝐱1,𝐮1,𝐰1, 𝐱2),… , (𝐱𝑁 ,𝐮𝑁 ,𝐰𝑁 , 𝐱𝑁+1)}. E.g.,

neural network with parameters 𝜃 can be trained using Stochastic
radient Descent (SGD) to solve the following optimization problem:

in
𝜃

1
𝑁

𝑁
∑

𝑖=1
(𝐱𝑖+1 − 𝑓𝜃(𝐱𝑖,𝐮𝑖,𝐰𝑖))2. (2)

With this conventional approach, the neural network learns to estimate
the transition function by fully relying on the training data-set, without
explicitly learning the underlying physical relationships. It should be
noted that Eq. (2) represents the scenario for a fully observable system,
where complete state information is known and can be used to obtain
predictions for the next states. However, a real-world system; such as a
thermal model for a building; is generally partially observable where
some state parameters cannot be measured or obtained directly. In
such cases, using Eq. (2) directly is not useful as the observed states
lack complete information. To mitigate this, [22] presents different
approaches, one of which involves engineering new high-dimensional
features based on the observed states. E.g., in case of a thermal model
for a building, the observed state can include measurements of room
temperature or actual power consumption, whereas a hidden state
parameter can be the temperature of building thermal mass (e.g., walls,
furniture etc.) which is difficult to measure or estimate accurately.
Accordingly, to compensate for this missing state parameter, a sequence
of past room temperature measurements can be used in lieu of a single
room temperature measurement and this corresponds to an engineered
feature for mitigating partial observability of this system.

For such partially observable MDPs, the state space(𝐗) consists of an
observable component (𝐗obs) and a feature engineered component (𝐗f)
such that 𝐗 = 𝐗obs×𝐗f. With this high dimensional state representation,
a neural network can be trained to estimate the next observable state
(𝐱obs

𝑘+1) given state, action and other exogenous inputs, thus modifying
the optimization problem in Eq. (2) as:

�̂�obs
𝑖+1 = 𝑓𝜃(𝐱𝑖,𝐮𝑖,𝐰𝑖),

min 1
𝑁
∑

(𝐱obs
𝑖+1 − 𝑓𝜃(𝐱𝑖,𝐮𝑖,𝐰𝑖))2.

(3)

𝜃 𝑁 𝑖=1
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Aside from this data-driven approach, for problems where the physics
of the system are known a priori, the system dynamics can be approx-
imated using a system of ordinary or partial differential equations that
relate the observable states (𝐱obs

𝑖 ), actions (𝐮𝑖), other exogenous factors
(𝐰𝑖), hidden state parameters (𝐳𝑖) and system parameters (𝛺). This is
represented using a generic differential operator (𝛺) as:

𝛺(𝐱𝑖,𝐮𝑖, 𝐳𝑖, 𝐳𝑖+1,𝐰𝑖) = 0. (4)

In the following section, we present the physics informed neural
network architectures, which combine Eq. (3)–(4) to obtain control-
oriented models for systems where the underlying physics are known
a priori.

3.2. Physics informed neural network architectures

Consistent with previous works such as [31,33], we explicitly en-
code the underlying physics of the system in a standard neural network
architecture and then train it on the data collected. Assuming a partially
observable setting, the network is trained to predict the next observable
state (𝐱obs

𝑖+1) and a latent representation (𝐳𝑖) using a high dimensional
state input (𝐱𝑖), action (𝐮𝑖) and exogenous information (𝐰𝑖). This is done
by setting up a constrained optimization problem based on Eq. (3) as:

min
𝜃,𝛺

1
𝑁

𝑁
∑

𝑖=1

(

𝐱obs
𝑖+1 − �̂�obs

𝑖+1
)2

s.t. 𝛺(𝐱𝑖,𝐮𝑖, �̂�𝑖, �̂�𝑖+1,𝐰𝑖) = 0,

∀ (𝐱𝑖,𝐮𝑖,𝐰𝑖, 𝐱obs
𝑖+1) ∈  .

(5)

To solve this optimization problem, we define a loss function composed
of two terms; reg represents the mean squared error loss for regression
and phys represents the physics-based loss that makes the network
adhere to the underlying physics. It should be noted that for real-
world scenarios the dynamics of the system is influenced by exogenous
parameters/ noise and does not exactly satisfy Eq. (4). To manage this,
we replace the strict equality by a least-squared error term as shown in
the loss term formulation in Eq. (6).

Loss = reg + 𝜆 phys

reg = 1
𝑁

𝑁
∑

𝑖=1

(

𝐱obs
𝑖+1 − �̂�obs

𝑖+1
)2

phys =
1
𝑁

𝑁
∑

𝑖=1

(

𝛺( 𝐱𝑖,𝐮𝑖, �̂�𝑖, �̂�𝑖+1,𝐰𝑖)
)2

(6)

he influence of the physics-based loss term is regulated using 𝜆. The
ptimization problem defined in Eq. (5) can then be solved by using
tochastic gradient descent to minimize the loss defined in Eq. (6).

Based on this formulation, we propose two variants of Physics
nformed Neural Networks as shown in Fig. 1. The proposed net-
orks have different architectures but are both trained based on the
ethodology described in Eq. (5)–(6).

Fig. 1(a) presents an architecture comprising two modules, an En-
oder and a Dynamics module. The encoder module is parameterized
y 𝜃L and the dynamics module is parameterized by 𝜃d. The encoder
odule creates a bottleneck and encodes the high dimensional, feature

ngineered component of state inputs (𝐱f
𝑖) into a low dimensional latent

epresentation (�̂�𝑖). This latent representation along with observable
tate information (𝐱obs

𝑖 ), action (𝑢𝑖) and other exogenous informa-
ion (𝐰𝑖) are then used by the dynamics module of the network to
redict the next observable state (�̂�obs

𝑖+1) of the system. Thus, a forward
ass of this network can be expressed as:

�̂�𝑖 = 𝑔𝜃𝐿 (𝐱
f
𝑖),

̂obs
𝑖+1 = ℎ𝜃𝑑 (�̂�𝑖, 𝐱

obs
𝑖 , 𝑢𝑖,𝐰𝑖)

(7)

ith this architecture, the prediction for next observable state de-
ends on, among other parameters, the prediction of the latent rep-
esentation (�̂� ). This ensures that the encoded representation obtained
4

𝑖 t
Fig. 1. Physics Informed Neural Network architectures. 𝐱f
𝑖 represents a high dimen-

sional feature engineered state component of the system, whereas 𝐱obs
𝑖 represents the

observable components of the input sample 𝑖. 𝐳𝑖 represents a low-dimensional latent
representation of the system.

from this network contains information regarding the dynamics of the
system.

Differing slightly from this approach, Fig. 1(b) presents a con-
ventional fully connected neural network architecture where physics
knowledge is incorporated based on Eq. (5)–(6). The inputs of this
architecture comprise of the full state representation (𝐱𝑖 = (𝐱f

𝑖 , 𝐱
obs
𝑖 )),

ction and exogenous information. With these inputs, the network
redicts the next observable state and a latent representation simul-
aneously. Thus, there is explicit parameter sharing between these
redictions and these shared parameters are represented by 𝜃. The
utput layer uses an identity activation function and hence the outputs
�̂�obs
𝑖+1 and �̂�𝑖) are linear combinations of output of the last hidden layer

of the network (𝑠𝜃). Thus, a forward pass of this network can be
formulated as:
�̂�𝑖 = 𝐠1𝑠𝜃(𝐱𝑖,𝐮𝑖,𝐰𝑖) + 𝐠2,

̂obs
𝑖+1 = 𝐡1𝑠𝜃(𝐱𝑖,𝐮𝑖,𝐰𝑖) + 𝐡2,

(8)

where 𝐠1, 𝐠2, 𝐡1 and 𝐡2 are matrices of appropriate dimensions. With
his parameter sharing, the obtained latent representation does not
ontribute in obtaining the predictions for the next observable state.
onsequently, this latent representation may not contain sufficient

nformation about the dynamics of the system. However, due to the
hysics, the latent representation is physically relevant and repre-
ents the hidden parameters of the system. Hence, in this case, the
hysics module acts as a regularization term guiding the network to
earn the dynamics of the system and some latent representations
imultaneously.

. Experimental setup

In this section, we apply the general methodology introduced in
ection 3 for the case of thermal modeling of a building. We will detail

he thermal building model used, the type of experiments performed
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Fig. 2. The resistance–capacitance network thermal model of the building.

and the configurations of physics informed neural network architec-
tures used. We compare the prediction accuracy of both architectures
against a similar conventional neural network and assess whether the
proposed architectures can be used for control applications.

4.1. Thermal model of a building

A simplified scenario is considered with a single room (or zone) that
is heated using a heat source. To model this scenario, we adopt a gray
box modeling approach using the 2R2C network model [40], illustrated
in Fig. 2 and with the following state-space formulation:
[

�̇�𝑟
̇𝑇𝑚

]

=
⎡

⎢

⎢

⎣

−
(

1
𝐶𝑟𝑅𝑟𝑎

+ 1
𝐶𝑟𝑅𝑟𝑚

)

1
𝐶𝑟𝑅𝑟𝑚

1
𝐶𝑚𝑅𝑟𝑚

− 1
𝐶𝑚𝑅𝑟𝑚

⎤

⎥

⎥

⎦

⋅
[

𝑇𝑟
𝑇𝑚

]

+
[

𝑏
0

]

⋅ 𝑢 +

[ 𝛼
𝐶𝑟

𝛽
𝐶𝑟

1
𝐶𝑟𝑅𝑟𝑎

1−𝛼
𝐶𝑚

1−𝛽
𝐶𝑚

0

]

⋅
⎡

⎢

⎢

⎣

𝐺
𝐼𝑔
𝑇𝑎

⎤

⎥

⎥

⎦

.

(9)

ere, 𝑇𝑟, 𝑇𝑚 and 𝑇𝑎 are the room temperature, temperature of building’s
hermal mass and outside temperature respectively, 𝐺, 𝐼𝑔 represent
olar irradiance and internal heat gains, and 𝑅𝑖, 𝐶𝑗 correspond to heat
ransfer parameters of the building. The room temperature 𝑇𝑟 is an
bservable state of the system that can be measured. Contrarily, 𝑇𝑚
s a hidden state of the system which cannot be measured directly
nd, in most cases, is extremely difficult to estimate. This modeling
pproach hence leads to a partially observable model of the building.
dditionally, a low-level back-up controller is assumed which ensures

hat the room temperature remains within a predefined set of limits
ased on the comfort of the user. The action of this back-up controller
ffects the actual power consumption (𝑢phys

𝑖 ) which is modeled as:

phys
𝑖 =

⎧

⎪

⎨

⎪

⎩

0 ∶ 𝑇𝑟,𝑖 > 𝑇max
𝑟

𝑢𝑖 ∶ 𝑇min
𝑟 ≤ 𝑇𝑟,𝑖 ≤ 𝑇max

𝑟

𝑢max ∶ 𝑇𝑟,𝑖 < 𝑇min
𝑟

(10)

his backup controller ensures the comfort of the user and its actions
eads to a difference between the power demanded (𝑢𝑖) and the actual
ower consumed (𝑢phys

𝑖 ). To solve Eq. (9)–(10), an accurate estimate
f hidden state (𝑇𝑚) is required along with accurate measurements
elated to exogenous quantities like 𝐺 and 𝐼𝑔 . Since in practice precise
stimates, measurements are difficult to obtain, we will eventually get
nly an approximate solution. Further, the building parameters like
onductivity of different walls change over time due to deterioration
nd lead to model bias. Hence modeling a household directly using
q. (9)–(10) is a difficult and expensive process and can lead to biased
nd sub-optimal control policies.

.2. Physics informed neural network configurations

The state-space model defined in Eq. (9) is a continuous time model.
o map this model as an MDP, we discretize it based on the frequency
f choosing an action (𝑢). For our case study, we set this frequency to
ne action every 30 min and assume that the inside room temperature
nd power consumed by the heating source are monitored over this
5

ixed time interval (𝛥𝑡). The objective of the physics informed neural
Table 1
State and Action Definitions for time step 𝑖.

Symbol Physical meaning

𝐱𝑓𝑖 {(𝑇𝑟,𝑖−𝑘 ,… , 𝑇𝑟,𝑖−1),
(𝑢phys

𝑖−𝑘−1 ,… , 𝑢phys
𝑖−2 )}

𝐱obs
𝑖 (𝑇𝑟,𝑖 , 𝑢

phys
𝑖−1 )

𝐰𝑖 (𝑡𝑖 , 𝑇𝑎,𝑖)

𝐳𝑖 𝑇𝑚,𝑖
𝑢𝑖 Controller Power

network model is to predict the room temperature and the power
consumed for subsequent time steps.

Both architectures shown in Fig. 1 were used and prior physics
information was given by discretizing Eq. (9). This state-space model
leads to a partially observable system. To mitigate this, input in the
form of a sequence of past 𝑘 observable states and actions (𝐱f

𝑖) along
with observable state, actions and other exogenous information in the
form of time of day (𝑡) and outside air temperature is used. With these
inputs, the networks predict the room temperature, power consumption
and estimate the temperature of building thermal mass (𝑇𝑚). The
esulting state and action definitions are summarized in Table 1.

The parameter 𝑘, referred to as ‘depth’, controls the amount of
nformation given to the neural network. It is important to note that
he observed states for time step 𝑖 consist of the room temperature at
his time step (𝑇𝑟,𝑖) and the actual power that was consumed during
he last time step (𝑢phys

𝑖−1 ). Prior physics knowledge is provided to these
rchitectures by directly plugging in Eq. (9) in the form of

�̇�𝑟
̇𝑇𝑚

]

=
[

−𝑎11 𝑎12
𝑎21 −𝑎22

]

⋅
[

𝑇𝑟
𝑇𝑚

]

+
[

𝑏
0

]

⋅ 𝑢 +
[

𝑐11 𝑐12 𝑐13
𝑐21 𝑐23 0

]

⋅
⎡

⎢

⎢

⎣

0
0
𝑇𝑎.

⎤

⎥

⎥

⎦

(11)

The parameters 𝑎𝑖, 𝑏, 𝑐𝑗 are building specific parameters and initialized
based on the building EPC values and further tuned during the training
phase. This ensures that in the absence of accurate values of these
parameters, the model can be initialized with approximate values.
Moreover, these values can be tuned over time, thus taking into account
any natural variations. It should be noted that this prior knowledge
can be provided based on any other model of choice. However, as we
focus on obtaining control-oriented models, a 2R2C modeling approach
was chosen, which has been used previously in developing MPC-based
control strategies [14,40]. With this information setting, the different
components of the loss function defined in Eq. (6) can be formulated
as:

reg = 1
𝑁

𝑁
∑

𝑖=1
(𝑇𝑟,𝑖 − �̂�𝑟,𝑖)2 +

1
𝑁

𝑁
∑

𝑖=1
(𝑢phys

𝑖 − �̂�phys
𝑖 )2,

phys =
1
𝑁

𝑁
∑

𝑖=1
(𝑇

𝑚,𝑖 − �̂�𝑚,𝑖)2,

(12)

The hidden state (𝑇
𝑚,𝑖 ) represents the physics module output and is

computed by first estimating �̇�𝑟,𝑖 and then using Eq. (11) to obtain 𝑇
𝑚,𝑖

as shown in Eq. (13).

�̇�𝑟,𝑖 =
𝑇𝑟,𝑖+1 − 𝑇𝑟,𝑖

𝛥𝑡

𝑇
𝑚,𝑖 =

1
𝑎12

(�̇�𝑟,𝑖 + 𝑎11�̂�𝑟,𝑖 − 𝑏�̂�phys
𝑖 − 𝑐13𝑇𝑎,𝑖)

(13)

Here, �̂�𝑟,𝑖 is obtained as an output by using input sample 𝑖−1 and �̂�phys
𝑖 is

obtained by using input sample 𝑖. The target value for the hidden state
is explicitly dependent on the predictions of the room temperature and
the power consumed. The loss functions defined in Eq. (12) guides the
outputs of the networks towards physically relevant values.
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4.3. Training data

We considered two different scenarios for obtaining training data
for these architectures: (1) a simulated single household environment,
and (2) real-world cold storage data. The simulated scenario has been
specifically designed to assess the capacity of the proposed physics
informed neural network architectures to estimate the hidden state 𝑇𝑚
of a building. After establishing this, later experiments focused on the
real-world data scenario and assessed the performance of our proposed
architectures for different configurations. Both scenarios involved ob-
servations related to room temperature, actual power consumption,
control actions and outside air temperature. The frequency of these
measurements was set to 1 measurement per 30 minutes. A training
data-set equivalent to 120 days of such measurements was gener-
ated/collected. Similarly, a test data-set was generated equivalent to
5 days that were not a part of the training set. Each day corresponds
to 48 input samples and the test sets for both scenarios used are shown
in Fig. 3.

4.3.1. Simulated data
In this scenario, Eq. (9)–(10) were solved, as discussed in [40]. A

discretization step of 1 minute was assumed and a control action was
taken every 30 minutes. For every minute, a first order approximation
of Eq. (9) was solved to obtain the room temperature, hidden state and
actual power consumption. To further simplify the scenario, we ignored
the effects of solar irradiance and internal heat gain. The simulation
was initialized by setting 𝑇𝑟 = 𝑇𝑚 = 17◦C. Further, control action 𝑢 was
chosen randomly and did not follow any active control logic. Fig. 3(a)
shows a subset of data generated in this scenario.

4.3.2. Real-world data
This scenario involved data obtained from a cold storage. This

scenario is more complex than the simulated data generated as it
involved actions taken by an active control strategy and also included
solar irradiance, internal heat gains, etc. The influence of these exoge-
nous factors was recorded only indirectly, via the room temperature
measurements, due to absence of sensors to directly measure them.
Fig. 3(b) shows a subset of data corresponding to this scenario. In this
cold storage case, no back-up controller was used and hence the actual
power consumed is identical as the control setpoints.

4.4. Parameter tuning for physics informed neural network architectures

Besides different data scenarios, we also analyze the impact of dif-
ferent parameter configurations for both architectures. The input given
to both architectures involves a sequence of past room temperatures
and control actions. The length of this sequence, referred to as ‘depth’,
determines the amount of past information available to the model and
is an important parameter in the architecture. This information, to a
certain level compensates for missing information like solar irradiance
or internal heat gains, helping the model to better estimate the hidden
state of the building (𝑇𝑚). Further, the network sizes and hyperparam-
eters (learning rate, type of optimizers) were tuned for a base case of
setting 𝜆 = 0 for both architectures. This ensured that the network
size and representative power was not constrained by the physics-based
regularization, and we can observe supplementary gains in performance
after tuning 𝜆. The set of hyperparameters selected for both these
architectures are listed in Appendix A. The hyperparameter values
were obtained by minimizing the mean absolute error in predicted
temperature as a performance metric. For each of these configurations,
we train 20 seeded models and the results are expressed using the
mean (and standard deviation) of these 20 models. Because of the low
training sample regime, training multiple models ensures that we ob-
tain a distribution of performance values, thus mitigating the effects of
possible outliers due to under-fitting. Additionally, Appendix B includes
information regarding the training time required for each configuration
and details the hardware setup used.
6

Fig. 3. Test data-sets used for both data scenarios, (a) Simulated Data, (2) Real-world
scenario.

Table 2
Comparison of MAEs for room temperature (𝑇𝑟) and hidden state (𝑇𝑚) for proposed
rchitectures.

MLP PhysReg MLP PhysNet

𝑇𝑟 0.209◦C 0.197◦C 0.226◦C
𝑇𝑚 1.413◦C 0.385◦C 0.436◦C

5. Results and discussions

Three different experiments were performed to test our proposed
PhysNet and PhysReg MLP architectures (Fig. 1) and assess their per-
formance as a control-oriented model.

5.1. Architecture validation

The aim of our first experiment was to validate the performance of
the proposed physics informed neural network architectures in deter-
mining the quality of the hidden state estimates. For this purpose, simu-
lated data was used for training and validation. The validation data-set,
shown in Fig. 3(a), contains 240 samples for which we computed the
Mean Absolute Error (MAE) of predicted room temperature (𝑇𝑟) and
predicted hidden state (𝑇𝑚). A fixed training size of 120 days (5,760
samples) was used along with a fixed depth value of 8. Fig. 4 shows
the predictions of both architectures.

We note that for both cases, the room temperature and action pre-
dictions follow the actual values closely, indicating a good prediction
performance. Additionally, the estimates of 𝑇𝑚 track the actual values
of hidden states, thus demonstrating the effectiveness of our proposed
architectures for the given prediction task. Table 2 shows the MAE
values for room temperature (𝑇𝑟) and hidden state (𝑇𝑚) predictions for
this experiment.

Table 2 presents error values in ◦C. A conventional MLP with the

same hyperparameters as the PhysReg model was used to benchmark
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Fig. 4. Prediction results for the two physics informed neural network architectures
n simulated data scenario.

he performance of PhysNet and PhysReg MLP architectures. For all
hree networks, the mean errors are less than 0.25◦C, indicating a

good performance. Comparing the architectures, the PhysReg model
performs the best with an absolute error of 0.197◦C. However, there
is a significant difference between mean errors for the hidden state,
where conventional MLPs cannot estimate this state due to lack of
target values, thus performing poorly in this metric. The physics in-
formed neural network architectures perform 60–70% better than the
conventional MLPs with an absolute error of less than 0.5◦C. These
results demonstrate that PhysNet and PhysReg MLP architectures can
be used effectively to predict room temperature and hidden state and
hence are more suitable for control oriented thermal modeling of a
building.

5.1.1. Interpretability
From the results presented in Table 2, it is evident that the proposed

physics informed neural network architectures can effectively estimate
the hidden state (𝑇𝑚) while maintaining a good prediction accuracy
for the observable state (𝑇𝑟). It can be observed in Fig. 4 that the
estimate of temperature of building thermal mass acts as a thermal
inertia quantity, having slower time dynamics compared to the room
temperature. This behavior is consistent with our intuition and mimics
the actual temperature of thermal mass. Thus, the trained physics-
informed models give us additional insights about the behavior of
the building by providing accurate estimates of both observable and
hidden states of the building system. Such insights can help to better
understand the predictions of the neural network and can be leveraged
to design interpretable data-driven controllers.

5.1.2. Real-world data
Following these results, both physics informed neural network ar-

chitectures were trained on real-world data obtained from a cold stor-
7

age unit. Similar to the previous case, a training data size of 120 days
Fig. 5. Prediction results for physics informed neural network architectures on the
real-world data scenario.

was used and performance was validated on 5 test days, including a
benchmark by a conventional neural network. Fig. 5 shows the perfor-
mance of PhysNet and PhysReg MLP architectures on the real-world
data-set.

We note that both architectures accurately predict the room tem-
perature and power consumption values for the 5 test days along
with a plausible estimate of the hidden state of the system (𝑇𝑚). The
results shown in Figs. 4–5 and Table 2 validate the performance of the
proposed physics informed neural network architectures for the task of
modeling the thermal behavior of a building.

5.2. Performance vs. training data size

The second set of experiments analyzed the impact of training data
size on the performance of physics informed neural network models.
The motivation for using physics informed neural networks was to
leverage prior knowledge to train models faster and more efficiently.
To validate this, models were trained on real-world training data of
varying size, sampled from the main training set. Each model was
then tested using MAE as the performance metric on the test data-
set of 240 samples (5 days) shown in Fig. 3(b). Two different test
configurations were used, depending on the prediction horizon. Our
architectures enable one-step ahead prediction. To obtain predictions
for longer horizons, a recursive strategy was used, where the model
output was fed back to the model as input to generate multi-step
forecasts. This strategy mimics a tree search algorithm used in model-
based RL techniques like [29]. The two test configurations used a
prediction horizon of 3 hours (6 steps) and 12 hours (24 steps). The per-
formance of physics informed neural networks was further compared
to a conventional neural network and a persistence forecast model
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Fig. 6. Mean room temperature prediction error for varying training data size. The
plots represent mean error of 20 trained models and the error bars represent ± standard
eviation. The models used in this experiment are trained and tested on real-world data
btained from a cold storage unit.

or both these configurations. Fig. 6 shows the model performance for
ifferent training data sizes for the real-world data scenario.

We note that for a prediction horizon of 12 h, both PhysNet and
hysReg MLP architectures perform better than the conventional MLP.
or smaller training data sizes (15–45 days) the predictions for physics
nformed neural network architectures attain an MAE that is at least
5% lower than MLP. This difference decreases sharply with increasing
raining size, where for higher training sizes (> 90 days) the perfor-
ance of all three architectures is similar. Contrary to this, for a shorter
rediction horizon, the conventional MLP outperforms the PhysNet
rchitecture, and performs similarly as the PhysReg MLP architecture.
dditionally, in both configurations, all three architectures outperform
persistence forecasting model of similar prediction horizon for most

raining data sizes. This shows that introducing prior knowledge to
he neural network architecture aids the network to learn more effi-
iently and requires less training data to reach equally good (or better)
erformance.

.3. Performance vs. prediction horizon size

From Fig. 6, we note a difference in performance for different
rediction horizons. While it is intuitively expected that increasing the
rediction horizon will lead to compounding of errors, it is of interest
o analyze how this performance degradation evolves for each of the
wo architectures. This experiment, thus analyzes the performance
f physics informed neural networks for varying prediction horizons.
ecause of their relevance for typical control time frames, prediction
orizons of {0.5, 3, 6, 12, 18, 24} hours were selected, with each
our corresponding to 2 prediction steps. To include the impact of
raining data size, two training configurations of 30 days and 90 days
ere chosen. Like the previous experiment, real-world data was used
ith 5 test days as shown in Fig. 3(b). MAE of room temperature
redictions was chosen as the performance metric and the performance
as again benchmarked using a conventional MLP and a persistence

orecast model with prediction horizon of 30 minutes (equaling 1 time
tep). Fig. 7 presents the results obtained for this experiment.

We note that for a large training data (120 days), all three archi-
ectures perform similarly in terms of mean values. However, the error
ars indicate that PhysNet, PhysReg MLP architectures produce results
ith a more narrow distribution. This indicates a stable training per-

ormance in case of physics informed neural network architectures. For
ow training sample configurations, the performance of conventional
LP deteriorates rapidly with increase in prediction horizon size, with
8

Fig. 7. Mean room temperature prediction error for varying prediction horizons. The
plots represent the mean error of 20 trained models and the error bars represent ±
standard deviation. The models were trained and tested on the real-world cold storage
data-set.

an error of close to 1◦C for the case of 24 hours. While there is a sig-
nificant decrease in performance for physics informed neural networks,
the error margins remain around 0.75◦C with a standard deviation of
±0.3◦C. This indicates that with less training data, the physics informed
neural network models can use prior physics knowledge and lead to
trained models that are stable and perform better than conventional
MLPs. This is an important feature that can be leveraged in control
applications for evaluating longer trajectories in tree searches.

These results demonstrate that introducing prior knowledge into a
network leads to better predictions, makes the training process sample
efficient and yields models that can be used for developing better
control algorithms.

6. Conclusion

This work presented the application of physics informed neural net-
works for control-oriented thermal modeling of buildings. Our results
show that both physics informed neural network architectures perform
well for the given task of predicting the room temperature, with a
low prediction error (less than 0.25◦C). Further experiments confirm
that physics informed neural networks are better suited for modeling
in case of less training data and longer prediction horizons. This also
indicates the robust training performance of PhysNets, PhysReg MLP
architectures and their ability to generalize well even with fewer train-
ing samples. Additionally, we verify that the physics informed neural
network models can estimate hidden states of the building effectively.
This is an important feature and can be exploited further in developing
control policies. Moreover, our proposed physics informed neural net-
work architectures work with approximate values of model parameters
and can incorporate partial knowledge about building physics. With
such a setting, models for different buildings can be obtained using
the same initial parameters and building physics, making this modeling
approach scalable and easy to deploy.

Future work

Future work will involve two key directions:

(i) Developing Control Algorithms, and
(ii) Improving PhysNet and PhysReg MLP architectures.

In (i) we will use these architectures in model-based RL algorithms
like [29,30]. The control agent will be capable of learning the model of
the building and an optimum control policy simultaneously. Moreover,
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Table A.3
Hyperparameters for PhysReg MLP architecture.

Parameter Value

Optimizer Adam
Learning Rate 0.001
Activation Function tanh
Batch Size 2048
Hidden Layers 2
Neurons per layer 64

leveraging the learnt model, the agent can create a schedule for the next
hours, making the decision making process interpretable and allowing
human supervisory control. For (ii), we aim to improve the architecture
by introducing a direct multi-step forecasting capacity rather than the
current one-step prediction setting. This will allow the architecture
to produce one shot forecasts for a pre-defined prediction window.
Other improvements include assessing the performance benefits of
using recurrent neural networks in the model architecture and the role
of clustering and transfer learning for scalable model deployment.
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Appendix A. Hyperparameters for physics informed neural net-
works

Both variants of physics informed neural networks were imple-
mented using Pytorch Lightning package, [41]. Table A.3 and Table A.4
present the hyperparameters chosen for these architectures. 20 models
were training using the same set of hyperparameters and with different
seeds between 1 to 20. Both architectures were trained using a batch
size of 2048 and with 75 epochs.

These hyperparameters were chosen using a grid search strategy and
Mean Absolute Error for predictions on a validation set as the metric.
The neural network hyperparameters were tuned first by setting 𝜆 equal
o 0. After this, the physics informed neural network parameters were
uned.

More information regarding the code can be found on: https://
9

ithub.com/GargyaGokhale/PhysNet_Thermal_Models
Table A.4
Hyperparameters for PhysNet architecture.

Parameter Value

Optimizer Adam
Learning Rate 0.001
Activation Function tanh
Batch Size 2048

Encoder Module (𝜃𝐿)

Hidden Layers 2
Neurons per layer 24

Dynamics Module (𝜃𝑑 )

Hidden Layers 1
Neurons per layer 128

Table B.5
Training Time Required.

Neural Network Type Time

PhysReg MLP 3 minutes
PhysNet 4 minutes

Appendix B. Training time and hardware configuration

For results presented in Section 5.1, 20 instances of the neural
network were trained using the same set of hyperparameters but dif-
ferent randomly initialized weight and bias values. On training, these
20 instances were used and the mean of their prediction was used.
Table B.5 presents the training time required for training these 20
instances for each of the two proposed physics informed neural network
variants.

The training was carried out locally on a Dell laptop with Intel(R)
Core(TM) i7-10850H CPU, 2.70 GHz and 16 GB installed RAM.
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