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Executive Summary 

 

This offers a comprehensive view on the work done in RENergetic work package 3 (WP3) as 
of beginning of April 2022. Furthermore, the document is relevant for project members involved 
in the pilot locations as it summarizes the main concerns and ideas from the ICT point of view.  

This document is the first deliverable of WP3 and describes the interim version of the ICT 
RENergetic system that is being developed in the project. The requirements and overall vision 
of the system, as well as its functionalities are described. 

The RENergetic system aims to provide visualizations of the data coming from energy island 
systems and corresponding forecasts for the different types of users, such as visitors, 
residents, and managers. The data and forecasts are also used by optimization algorithms and 
demand response programs to maximize the share of renewables, level of autarky and self-
consumption. The optimization is performed in a hierarchical manner with two levels: A global 
multi-vector optimizer and domain-specific optimizers. Domain-specific optimizers solve an 
optimization problem tailored to a specific sub-system of the energy island. Examples for these 
sub-systems or domains are the heating domain, the electricity domain or electrical vehicle 
charging. 

From a software perspective, the RENergetic system is designed as a service-oriented 
architecture. That is to say the system is built as a set of modular services that each perform 
some specific functionality and may communicate with other modules of the system. The 
RENergetic system is deployed in the supercomputing platform provided by a project member 
(Poznan Supercomputing and Networking Centre).  

The development process in the project adapts the Scrum framework and other agile methods. 
Thus, the functionalities of the systems are formulated as user stories that are grouped into 
epics (i.e., collections of user stories related to a specific domain or module of the RENergetic 
system). The requirement analysis utilizes the Smart Grid Architecture Model (SGAM) 
approach, which is also used to ensure replicability of the system. This deliverable contains 
descriptions of the vision, mock-ups and details about algorithms for the following 
functionalities in the RENergetic system: 

▪ Common information model. 

▪ Forecasting. 

▪ Demand response for electrical vehicle charging. 

▪ Demand response for heat domain. 

▪ Heat supply optimization. 

▪ Local waste heat optimization. 

▪ Interactive platform. 

The objective of RENergetic is to demonstrate the viability of so-called ‘urban energy islands’. 
Energy islands seek to achieve the highest possible degree of self-sustainability with regards 
to the supply of its energy demand, be it electricity or heat through local renewable resources. 
At the same time, an urban energy island may offer ancillary services to the public grid 
surrounding it.   

These islands place the consumer at the centre of the energy transition, giving them an active 
part in energy communities capable of producing their own energy, sharing the surplus with 
the rest of the public grid and optimizing consumption. RENergetic will demonstrate that Urban 
Energy Islands increase both the number of renewables in these areas and the energy 
efficiency of local energy systems. RENergetic will demonstrate the viability of this energy 
islands in three site pilots, each of them of a different nature: New Docks, a residential area in 
Ghent – Belgium, Warta University Campus in Poznan, Poland and San Raffaele Hospital and 
its investigation and research campus in Segrate-Milan, Italy. The impact of the Urban Energy 
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Islands is assured as technical, socio-economic, and legal / regulatory aspects are considered 
while safeguarding economic viability.  

RENergetic will be carried out over the stretch of 42 months involving 14 European partners: 
Inetum (Spain, France, and Belgium), Clean Energy Innovative Projects and Gent University 
(Belgium), Poznan University of Technology, Veolia and Poznan Supercomputing and 
Networking Center (Poland), Ospedale San Raffaele, Comune di Segrate and University of 
Pavia (Italy), Energy Kompass GMBH (Austria), the University of Mannheim and the University 
of Passau (Germany), University of Stuttgart (Germany) and Seeburg Castle University 
(Austria). 
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I. INTRODUCTION 

I.1.  Purpose and Organization of the Document 

This document is the first deliverable of work package 3 (WP3) and describes the interim 
version of the ICT RENergetic system that is being developed in the project. The requirements 
and overall vision of the system and its functionalities are described, as well as technical details 
about software architecture, data modelling, development and deployment strategies. 

The document is structured as follows: The first chapter introduces the goals of the deliverable 
and present the development methodology taken in WP3. The second chapter contains 
information about technical details of RENergetic ICT system. It describes the approach for 
requirement analysis carried out by modelling system in SGAM cube in task 3.1. The approach 
also supports replicability of the solution solved by task 3.8. Further, this section contains the 
description of the output of task 3.2 - the ICT architecture and deployment tools and strategies. 
The third chapter is dedicated to the optimization approach in the RENergetic system. 
According to the tasks 3.3 and 3.4, the optimization is performed in a hierarchical manner and 
includes two layers, the multi-vector optimizer and domain-specific optimizers. The fourth 
chapter describes the proposed functionalities for the RENergetic system – a summary of 
results for tasks 3.3, 3.5 and 3.6. It provides current vision, mock-ups and ideas for algorithms 
and demand response programs, forecasting and other functionalities of the system. 

I.2.  Development Methodology 

The development process is adopting agile methodologies to create independent and self-
organized teams. In order to handle the large number of features in the RENergetic system 
and their interdisciplinary nature, an organization inspired by Scrum methodology is used. This 
organization of teams is shown in Figure 1. The main goal of this architecture is to simplify the 
information exchange between different project partners involved in requirement creation, 
design, and implementation of the RENergetic system. 

 

Figure 1 - Organization of teams and roles in development process 

The functionality of RENergetic system is divided into several big parts called epics. Currently 
the following eight epics are considered: 

▪ Heat demand response 

▪ Heat supply optimization 

▪ Local waste heat optimization 

▪ Electric vehicle demand response 

▪ Building electricity demand response 

▪ Electricity supply optimization 
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▪ Interactive platform 

▪ Forecasting 

The last two epics are considered to be cross functional. The epic “Interactive platform” unifies 
all functionalities that should be accessible by users through graphical interfaces of web 
application. The epic “Forecasting” brings together functionality connected to the forecasting 
algorithms that are used in other epics, such as optimization, demand response and 
dashboards in the interactive platform. 

As of April 2022, based on the needs and capabilities of the pilot sites, the project consortium 
decided that the development should start with the following epics: 

▪ Heat demand response 

▪ Heat supply optimization 

▪ Electric vehicle demand response 

▪ Interactive platform 

▪ Forecasting 

For each epic one responsible person, called epic owner, is assigned. This role is similar to 
product owner in standard Scrum, although the responsibilities of epic owner are limited only 
to the specific epic. This person collects requirements from all the partners in the project related 
to the functionality of the epic. In that way, every epic owner keeps the vision of a specific part 
of the system. Based on this vision, the user stories are generated, which then are transferred 
to the product owner. 

The product owner in this organization is responsible for the global vision of the system.  The 
product owner manages the backlog, i.e., the collection of user stories from all epics. The 
development team together with the product owner review these user stories. If the product 
owner and development team require additional information, a new communication round 
between epic owners and other partners is organized. 

The development team is interdisciplinary and consists of members responsible for the 
implementation of different technical modules in the system. That is to say, it is not limited to 
the software developers who write code. Designers of forecasting and optimization algorithms 
as well as data modelling experts could be the part of this team too. Work inside the 
development team is organized based on the Scrum methodology, although some workflows 
are adapted to the specifics of the project. For instance, the daily scrum is transformed into 
two weekly meetings. Scrum master is a separate role that is responsible to ensures the 
adherence to the principles of Scrum methodology during every activity inside of the dev team. 

This organization simplifies the task of transforming high level user stories into more technical 
user stories that could be implemented by the development team. This organization is also 
flexible – the epic owners could choose the way that they communicate with the partners. 
Another advantage is that many actions can be performed in parallel. 

The functionalities described in the third chapter of this deliverable (with the exception of 
common information model) were considered as separate epics. These functionalities were 
chosen as a main priority for the development by the project consortium. The deliverable 
describes current progress made in each epic based on the respective user stories and their 
implementations by the development team. 

I.3.  Scope and Audience 

This deliverable provides a comprehensive description of the interim version of the ICT tools 
developed for energy island communities in WP3. The authors describe the development 
process, conceptual architecture view as well as concrete algorithmic views on different 
subparts of the ICT solution. It refers to scientific publications wherever possible. Since the 



Description of the interim version of the ICT tools developed for energy island communities 23/02/2023 

RENergetic  13 

document presents the work done in WP3 in the first project period, presented content and 
algorithm may change and improve in the future. 

This deliverable offers a comprehensive view on the work done in WP3 so far. The document 
is relevant for project members involved in the pilot locations as it summarizes the main 
concerns and ideas from the ICT point of view. 
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II. ICT ARCHITECTURE OF RENERGETIC SYSTEM 

II.1.  Requirement Analysis SGAM 

One of the main objectives of RENergetic is to design and develop a reference system 
architecture for energy islands. Standardization and interoperability of the systems, its sub-
systems, components and business processes are key factors to enable replicability of the 
solutions. The system architectures developed in the project should act as a blueprint, which 
can be applied in the project pilots, but also for external scenarios. 

Several architecture models and methodologies that seemed suitable for application in 
RENergetic, were analysed. Subsequently, we found that the Smart Grid Architecture Model 
(SGAM) is on the way to standardization by the International Electrotechnical Commission 
(IEC) [1] and the most mature approach. In addition, it fits very well to our energy focus, while 
other smart city methodologies instead consider a very broad set of verticals like health and 
other topics. 

 

Figure 2 - SGAM interoperability levels [2] 

The SGAM combines different perspectives on a system into the five layers business, function, 
information, communication and component layers. This structure enables separation of 
concerns. The other two dimensions, “zones” and “domains” logically separate the energy 
system. 

 

Figure 3 - Three dimensions of SGAM framework [3]  
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The SGAM is focused on the electricity sector, but within RENergetic, we also consider other 
energy domains, especially heat. Therefore, the multi-energy SGAM to be developed by the 
standardization approach (IEC SRD 63200) is chosen. 

 

Figure 4 - Multi-energy SGAM [2] 

Within the project, we follow an engineering process based on the SGAM, which will be 
described in the following. We start top-down by analysing business layer and stakeholders 
and bottom-up by investigating the technical situation in the pilot sites. 

After this initial phase of system analysis, the system architecture is developed, followed by 
design and implementation of the system. 

 

Figure 5 - Model-Driven Architecture (MDA) engineering process [4] 

One of the main issues, when modelling the architecture of such complex system, is the level 
of abstraction of the model. In RENergetic, a certain level of abstraction is chosen for the 
different layers as shown in Figure 6. 
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Figure 6 - SGAM Level of Abstraction [4] 

In order to do so, a human-centric approach of user stories has been adopted that allows to 
communicate the needs of users in clear and simple phrases to get an understanding of all 
required features. These user stories are structured into overarching epics to form the basis 
for the requirements engineering for the RENergetic solutions. These user epics cover the 
electric as well as the heat domain and allow the RENergetic solutions to interact with a variety 
of infrastructure at the pilot and future replication sites. Each of these user epics will be mapped 
to a separate multi-energy SGAM cube. 

The goal of this process is to identify the essential items for each user epic implementation in 
each of the SGAM layers as well as all necessary data interfaces between the infrastructure 
at the pilot sites and the RENergetic system. 

This methodology also forms the basis for the replication package, which is presented in 
deliverable D8.1 and D8.2. There behavioural models, business models, and legal constraints 
will be added into the business layer of each epic’s SGAM cube as well. 

II.2.  RENergetic System Logical Overview 

The main purpose of RENergetic ICT solution is using the data coming from the energy island 
systems to provide visualization of this data to users as well as to forecast energy generation 
and consumption. Additionally, this energy data together with forecasts allow performing 
optimization of the energy sources usage and demand response programs. These methods 
allow achieving the energy island goals, like increasing the renewable energy share and 
maximizing energy autarky. 

That means that the system should be capable of ingesting various types of data coming from 
different sources in the energy island. This is not trivial task, since the architectures of different 
energy islands are very heterogeneous. For this reason, the project consortium decides that 
pilot sites are responsible for creation of a docking module that will be used to connect their 
respective diverse pilot system into the RENergetic system using an unified interface. Figure 
7 shows the layers of RENergetic system that connect pilot systems with the end users. 
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Figure 7 - Logical layers of RENergetic system 

Users could interact with the system through the RENergetic interactive platform, a web 
application provided by RENergetic system. Alternatively, it is possible to integrate the 
RENergetic system into already existing applications in the energy islands through its 
Application Programming Interface (API). Furthermore, API can be used to communicate with 
the energy island systems through docking module, in order to transmit control signal to 
installed equipment. 

Different types of users can use the RENergetic platform. Visitors of the energy island can 
receive information about energy island status, e.g., utilization of renewables, using their 
personal devices, displays installed in building halls or other physical installations. More 
information with greater detail is available to residents and associates of the energy island. 
This includes recommendations for changing the parameters of appliances for participation in 
heat demand response programs, dashboards with historic and forecasted energy data. 
Energy island managers receive additional information about the different energy vectors 
including, for example, the forecasted energy consumption and the recommended parameters 
and settings for energy sources.  

II.3.  RENergetic System Component View 

To implement identified logical layers of the RENergetic system, it is proposed to utilize 
microservice architecture depicted on the Figure 8. Each service is a separate software module 
that perform specific functionality. A service can interact with other services, the data storage 
and the interactive platform. The API and Access Management service is responsible for 
orchestrating operation of all other services. It also provides an API for communicating with 
external third-party systems. 

A microservice architecture is proposed to implement the identified logical layers of the 
RENergetic system. A summary of this architecture is depicted in Figure 8. A microservice is 
a separate software module built to perform a specific functionality. These microservices can 
interact with other services, such as the data storage and the interactive platform. A special 
role is assigned to the “API and Access Management” microservice as it is also responsible 
for orchestrating the operation of all other services. Furthermore, it provides an API for 
communicating with external third-party systems. The data is stored in two separate 
databases. A time series database is used for measurement data of various sensors in the 
system. Yet, a relational database is better suited to model the connections of different assets 
at the pilot. Other functionality is related to multi-vector optimization, domain-specific 
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optimization, forecasting or various forms of demand response, which are elaborated on in 
sections III and IV. 

 

Figure 8 - Microservice Architecture of RENergetic ICT System 

Such modular architecture enables flexible configuration of the system. This is important 
because not all energy islands have the necessary data or systems required for the operation 
of all services. In case some functionality is not needed or cannot be realised, the 
corresponding service can be excluded from an installation. A service-oriented architecture 
also simplifies extension of the system in the future. For instance, if optimization in an 
additional domain is required, the new service for that can be developed and easily integrated 
into the existing RENergetic system. 

The software packages and frameworks that are used for the implementation of the 
RENergetic system are shown in Figure 9. 

The data in the RENergetic platform is ingested by pilots' external systems – either with some 

open API or preconfigured scripts. Those scripts will be managed by Apache NiFi [7] (or any 

similar task scheduler/orchestrator).  Data in the RENergetic system is stored in the InfluxDB 

[5] (time series database) and PostgreSQL [6] 

The output from the data ingestion process will be stored into the InfluxDB database, initially 

in a raw way.  

Apache NiFi will run Apache Spark [8] processes, which is responsible for data post–

processing and normalization in InfluxDB (filling missing values, adjusting granularity, unifying 

units, aggregating measurements, etc.), time series inference and predictions pre generated 

data models.   

Machine learning workflows will be deployed and managed in Kubeflow pipelines [9]. These 

pipelines will be scheduled to run forecasting and anomaly detection algorithms. Generated by 

these algorithms data is stored in the data storage (time series and relational database) that 

can be accessed from the Kubeflow using API. 

Each microservice can be implemented using different programming languages and 

frameworks. Most of the microservices are implemented as Spring Boot [10] applications that 

provide APIs. The Spring Boot APIs are managed by WSO2 [11], which helps to secure the 

APIs.  

RENergetic interactive platform consist of two software modules: the web application is based 

on Vue.js [12] and Grafana [13]. The Vue.js application is the main graphical user interface for 

RENergetic users. It provides access to different functionalities depending on the roles (Guest, 

User, Energy Manager, and Administrator) assigned to the user: 

• Public dashboards 

• Private dashboards 

• Energy Island management (user, asset, measurement and dashboard management) 
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Grafana  is a tool that provides an easy way to create different types of graphs organized in 
dashboards that are accessible via the interactive platform. The dashboards implemented in 
Grafana are intended only for users with the Energy Manager role.  

Keycloak [14] is used as an identity and access management solution in RENergetic. There 
the user roles are configured. 

 

Figure 9 - Components of RENergetic ICT System 

II.4.  Deployment 

II.4.1.  Requirements 

The RENergetic system is designed as a microservice architecture. The uncoupled software 
components, and services make the system modular and scalable. Any infrastructure where 
RENergetic system could be deployed should meet the following requirements: 

▪ Support a microservice architecture. 

▪ Support running Docker Containers [15] managed by Kubernetes [16] - near de facto 
standard nowadays. 
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II.4.2.  Infrastructure 

The components of the RENergetic architecture are deployed in the Platform-as-a-service 
(PaaS) infrastructure provided by one of the partners in RENergetic - Poznan Supercomputing 
and Networking Center (PSNC). 

This infrastructure is based in OpenShift [17], a containerization software product by RedHat. 
OpenShift makes use of OKD [18] version 3.11 – community distribution of Kubernetes.  
Community OpenShift platform using Kubernetes 1.11. 

This kind of architecture lets us assign and scale the needed resources for each component 
in an independent way. 

 

Figure 10 - Control panel with RENergetic system services at PSNC PaaS 

PSNC provides two distinct PaaS clusters that will be used for development and production 
versions of the RENergetic system: 

II.4.3.  Strategy 

OKD offers mechanism to deploy software from the console or making use of the command-
line interface. Development team have created a script that provides an easy way to deploy 
every component. That allow developers to redeploy the changes in the Java API backend 
and frontend. 

II.4.3.a.  DevOps Architecture for RENergetic 

General Solution Definition 

The proposed solution is based on agile methodologies and aims to achieve a cycle of 
continuous integration and delivery of applications within RENergetic. In general terms, the life 
cycle of the applications would be as follows: 

1. The cycle of integration and continuous delivery will begin when a developer with his 
code already implemented executes a commit. 

2. At that moment, the code is committed to the version manager (Bitbucket [18]) and the 
work paths described in Jenkins [19] will start to be executed. 

3. This will download the dependencies described in the Maven pipeline [20] and 
automatically run the established tests, whose evaluation determines the next step. 
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4. In this way, once the tests have passed, the build or artifact construction will be 
executed. 

5. Once the artifact is built, the deployment or delivery phase of these artifacts begins. In 
the case of RENergetic, this delivery will be automated to achieve the continuous 
integration and delivery cycle. 

6. Once the artifact is built, it will be stored in an artifact repository ready for use. 

 

Figure 11 - DevOps process in RENergetic 

The fundamental principles of DevOps are as follows: 

▪ It allows to go faster in software development 

▪ It shortens feedback loops 

▪ It allows experimentation and continuous improvement 

▪ It provides cultural benefits (more productive and efficient teams, and happier 
customers) 

▪ It delivers business and customer value on an ongoing updates 

Undoubtedly, some practices have clearly risen as critical to the realization of the fundamental 
principles of DevOps: 

▪ Agile Software 

▪ Continuous Integration (CI) 

▪ Continuous Delivery (CD)  

▪ Proactive monitoring 

▪ Better communication and collaboration 

Therefore, DevOps touches almost every aspect of IT management: People, practices, and 
automation. 

Code Repositories and Workflows 

Version control is a system that records changes made to a file or set of files over time so that 
specific versions can be retrieved later. Code repositories allow developers to work on the 
code without directly affecting the current version of the microservice. Once a developer has 
finished working on some piece of code, they commit it and then merge or rebase it to the main 
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branch of the repository they are working on, thus updating the microservice. Workflows will 
be divided into branches, so that different developments can be parallelized and consolidated 
automatically. 

The workflow followed in the Gitflow model is as follows: 

▪ By default, you have two branches: master and develop. With develop being the branch 
where everything happens and master being the code version deployed in production. 

▪ From develop branch, new feature branches are created for the implementation of new 
features and bug fixes that are not in master branch. At any time, it should be possible 
to switch from develop to master branch, which means that the new features should 
not be developed in develop branch, but in the respective feature branches. 

▪ To go from develop to master branch one must create an intermediate release. This 
branch is used as an intermediate point to fix bugs before moving to production and is 
versioned Major or Minor. 

▪ There can be several relay versions maintained at the same time. 

▪ If a critical bug is discovered in master branch, hotfix branches are used to fix 
production. 

 

Figure 12 - Gitflow model [22] 

II.4.4.  Tools 

To organize the project from the development perspective we are making use of different tools: 

Jira 

Used to hold the backlog of user stories and to organize and follow up the Agile methodology 
applied in the project [23] 

▪ Backlog 

▪ Create sprints 

▪ Lifecycle of the tasks 

▪ Reporting 
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Confluence 

The site where content related to the development tasks is created, being a reference place 
for the Dev Team Members [24] 

Bitbucket 

Code repository based on Git that lets us to have a centralized place to: 

▪ Share our developments between all the Dev Team Members 

▪ Versioning the software 

▪ Create branches to organize the collaborative work. 

▪ Apply CI/CD mechanisms to automate tasks.      

Jenkins 

In today's DevOps world, continuous delivery and deployment is critical to delivering high-
quality software products faster than ever. It helps developers build and test software 
continuously. Essentially, Jenkins integrates development lifecycle processes of all types, 
including build, document, test, package, stage, deploy, static analysis, and more. 

Jenkins works as follows: 

▪ A developer commits the code to the source code. 

▪ The Jenkins server checks the repository at regular intervals for changes. 

▪ Jenkins detects changes that have occurred in the source code. 

▪ Jenkins will make those changes and start preparing a new version. If the build is 
correct, then Jenkins implements the built-in. 

You can configure the pipeline (the script to execute) to create the build with several steps: 
Prepare, test (unit tests and integration tests), package, publish, deploy. If the built-in is 
successful, Jenkins sends the created artifacts to the repository.   

SonarQube 

SonarQube [25] is "an automatic code review tool to detect bugs, vulnerabilities, and code 
smells in your code". It allows sharing rules between all developers and set goals regarding 
the development. 

II.5.  Security Considerations 

RENergetic system is going to implement security in different places: 

▪ Authentication 

▪ Role-based access 

▪ API security 

II.5.1.  Authentication 

The authentication to be able to access Kubeflow and the RENergetic system will be managed 
by Keycloak [14], an open-source identity and access management tool.  A realm in Keycloak 
is the equivalent of a tenant. It allows creating isolated groups of applications and users. Users 
can be created directly in Keycloak as it is shown on Figure 13. But it could be possible to 
enable the self-registration.  
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Figure 13 - User creation in Keycloak 

At the end, RENergetic will implement its user management functionality and will interact with 
Keycloak through its own API. Moreover, Keycloak offers mechanisms to create a customized 
login page shown on Figure 14. 

 

Figure 14 – RENergetic login page 

II.5.2.  Role-based Access 

Functionalities in the RENergetic system will be defined for different roles (Energy Manager, 
Resident, etc.). Then the users that will be created/register into the RENergetic system have 
to be assigned to the needed role(s) in order to be able to interact with the platform properly. 
Keycloak is used to configure the roles, manage their assignment, and retrieve them to apply 
restrictions through its API. 

II.5.3.  API Security 

Backend APIs are managed and exposed by the WSO2 API Manager. WSO2 makes it 
possible to integrate our APIs and manages them in order to keep them versioned and 
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secured. It offers different securitization options. In the current development stage, the Api 
Key option is used that enables the access via a static token. 

The next step will be to change the application-level security to OAuth2, making use of 
Keycloak as key manager of the dynamic tokens. WSO2 also allows configuring CORS 
policies, for example, to restrict the access from some IPs and the allowed HTTP methods. 
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III. OPTIMIZATION CONCEPT 

This chapter details the concept of optimization within the RENergetic solution. The main 
objectives (some of them are overlapping) are: 

▪ Maximize share of renewables. Any energy generation asset (no matter if it is 
electricity or heat domain, or both), can provide its energy to a certain degree of 
renewability. 

▪ Maximize autarky. Optimally supply the consumption from energy sources within the 
grid, either by shifting flexible consumption or by scheduling local generation. 

▪ Maximize self-consumption. Optimally use the generated energy within the energy 
island by minimizing energy flow through external grid connections. 

▪ (Minimize CO2 emission. CO2 emission is highly coupled with renewability of the 
energy share hence is already part of the first objective.) 

▪ (Minimize cost. Cost minimization of energy generation is coupled with higher self-
consumption values, autarky levels and reduced external connections.) 

In order to reach the above-mentioned goals, the RENergetic system can control/suggest 
operation of different assets from different domains, including Electric Vehicle (EV) charging, 
battery energy storage system, Photovoltaic (PV) system, heat-pump operation, Heat demand 
response signals, electricity demand response signals, etc. However, with this set of different 
decision variables, a lot of limitations come along. Among others, there are technical 
constraints for different domains, such as voltage limitations in the power grid, resource 
availability limitations, such as waste-heat availability, storage constraints, such as storage 
capacities of heat and electrical energy, or controllability limitations arising from the 
controllable assets, such as EV charging control, heat-pump operation modes and combined 
heat and power plant operation plans. Additionally, involvement of end-users, e.g., via manual 
demand response schemas, requires behaviour modelling of the users to incorporate their 
reactions in the system. All these limitations must be considered by the constraints of the 
optimization problem. 

Due to the requirement for replication of the solution, the optimization cannot model all domains 
and their constraints systematically. For example, it is not desired to have an exact power grid 
model with line impedance and topology, because this would limit the replicability of the model, 
due to high data and information requirement. Instead, model-free solutions or highly abstract 
representations of the actual energy island are desired, as long as they still capture the 
necessary energy island functionalities. Due to the interconnection of different energy domains 
(electricity, heat, mobility, etc.) the overall problem is highly constrained, mainly due to the 
interconnectors between the domains, e.g., heat pumps, and the huge amount of possible 
decision variables interactions. 

In order to achieve scalability and keep the global multi-vector optimization as abstract as 
possible, we propose a hierarchical concept for the optimization, depicted in Figure 15. The 
global multi-vector optimizer will fix the energy flow at inter-connectors between domains, e.g., 
charging stations, heat pumps or combined heat and power plants. While domain-specific 
solvers will try to optimize the energy usage within their domain, respecting the interconnector 
decision by the multi-vector optimizer. Therefore, only aggregated generation and demand 
profiles, as well as flexibility in both (generation and demand) are required. In a second step, 
the domain-specific optimizer will take care of the internal domain-specific assets, e.g., which 
electric vehicle will charge at which time, what heat demand response signals are sent to 
whom, or where to place ancillary services in the power grid domain.  
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Figure 15 - Concept of Hierarchical Multi-Vector Optimization. First, the global multi-vector 
optimizer fixes the domain interconnectors (CHP, heat pump, charging station). Second, the 

domain-specific optimizers control their local assets using domain-specific knowledge. 

The hierarchical concept performs the following three steps: 

1. Retrieve aggregated fixed load and generation (non-controllable, which must be 
served, e.g., baseload in heat and electricity grid), as well as flexibility potential 
(flexible loads and generation, e.g., battery or heat storage, manual/automatic 
heat/electricity demand response potential). 

2. Optimize inter-domain energy flow by fixing the operation of the inter-connectors 
(whether they are switched on/off or the operation mode if possible) and target values 
for aggregated flexible load and generation. 

3. Domain-specific optimizer optimizes the energy usage within its domain, following the 
flexible aggregated profile (this is important, because some inter-connectors, e.g., 
heat-pumps, are operated heat-driven, hence higher heat demand will increase the 
electricity consumption, which may lead to sub-optimal energy island operation in the 
electricity domain). The domain-specific optimizer should base its decision on the 
same global objectives (e.g., when scheduling the generation units), otherwise there 
is again the risk of sub-optimal energy island operation. However, the domain-specific 
knowledge and single disaggregated assets (and potentially higher time resolution in 
the electricity domain) can be used to reach the goal. 

From the RENergetic system architecture point of view (Figure 8), the functionalities related to 
the optimization are shared over multiple microservices. The multi-vector optimizer has a 
dedicated microservice in the architecture. Similarly, for each domain-specific optimizer a 
separate microservice is introduced.  To ensure correct operation of the algorithms these 
services require information from other parts of the system, such as forecasting or heat 
demand response. The output of the optimizers is stored in the data storage and can be shown 
on the interactive platform dashboards. 

III.1.  Multi-vector Optimizer 

As already outlined above, the multi-vector optimizer fixes the operation of the domain inter-
connectors. Therefore, an abstract representation of the different domains and its connected 
assets is required. The desired common information model, which can represent the required 
information, is discussed in detail in Section IV.1. Most important to know are the domain-
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interconnectors, which according to the name, are part of at least two managed domains of 
the energy island. For example, a heat pump consumes electrical energy while producing 
thermal energy in form of heat or cooling (air conditioning system). Another example is a 
combined heat and power plant, where external energy carriers (gas, methane, coal, etc.) are 
used to produce both thermal and electrical energy at once. In this way, the total efficiency of 
the plant is improved compared to energy generation in one single domain. 

In general, it may be enough to capture only the bigger inter-connector units, such that at least 
the biggest portion of the energy flow among domains is optimized. This can improve 
calculation speed and may be required in energy islands, where connection to all inter-
connectors is possible. In addition, multiple inter-connectors that share the same domains and 
can operate in the same operation modes may be aggregated. This reduces the number of 
decision variables on the multi-vector optimization problem. The following provides a non-
exclusive list of possible domain inter-connectors: 

▪ Heat pump 

▪ Combined heat and power plant 

▪ Charging station 

▪ Gas boiler (if connected to a gas distribution network, which is also managed by the 
energy island)  

Note that the multi-vector optimizer operates on the greatest common time resolution. For 
instance, if heat is planned/operated in 3-hour slots and the electricity grid is planned/operated 
in 15 min, the multi-vector optimizer plans for 3-hour slots. Because heating infrastructure has 
higher inertia, a planned heat-pump operation profile with a given heat energy demand for the 
3-hour block, may be fine-tuned be the electricity domain optimizer in a faster time scale. For 
example, the operation profile of the heat pump (force switch off/on) during the 3 hours can be 
optimized by the electricity domain optimizer as long as in total the same amount of energy is 
transferred between the electricity and heat domain. 

The main optimisation strategies offered above are clearly approached from an (integer) linear 
programming perspective with objective functions and constraints modelling the specifications. 
Such approach, primary for this research could be accompanied by probabilistic modelling and 
stochastic methods derived from AI and centred on machine learning from the data outputs of 
all available domain optimizers. These developments will be reported in deliverable D3.2.  

III.2.  Domain-specific Optimizer 

The domain-specific optimizers have two main tasks: (1) provide information on the 
aggregated domain-specific fixed energy demand and generation, as well as their flexible 
counterparts. Additionally, they may specify constraints on flexibility, e.g., energy restrictions. 
(2) After the multi-vector optimizer has fixed the inter-connector operations, the domain-
specific optimizer is in charge of optimizing the detailed operation of the single assets 
connected to the domain. For this task, domain-specific knowledge, e.g., requirement and 
placement of ancillary services for the power grid or temperature control of district heating 
systems can be utilized. 

The most important thing to remember is that every domain should try to stick to the inter-
connector operation profiles, e.g., if there is heat generation from the combined heat and power 
plant, the heat-domain optimizer should try to consume this heat by its own assets. Because 
the flexibility potential of each domain is already shared with the multi-vector optimizer in the 
first step, energy profiles at the inter-connectors are guaranteed to have a feasible solution in 
the domain as well. Note that if the profile cannot be achieved, e.g., there is deviation from the 
planned profile; this will result in less optimal energy island operation. In the worst case, if the 
deviation becomes too big, there is a need for re-planning by the multi-vector optimizer. 

The exact nature of the domain-specific optimizer differs between domains and is specified in 
Sections IV.3. , IV.4. and IV.5. Note some domains require additional synchronization on a 
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higher time resolution. For instance, EV charging and electrical domain need to synchronize 
their consumption/generation profiles in higher time resolution, which can be achieved by first 
fixing one domain (electric vehicle charging), and adjust the electrical domain on the 
consumption profile of the electric vehicle charging domain. This order may be determined by 
the availability of flexibility in the domains, e.g., if there are only a few electric vehicles, they 
should be optimized first. If there are plenty electric vehicle, the mobility domain offers more 
flexibility and may adapt to the requirements of the power grid. 
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IV. RENERGETIC FUNCTIONALITIES 

IV.1.  Common Information Model 

A Common Information Model (CIM) defines the structure and the way to store the data of an 
energy island. With the CIM in place, all components of the RENergetic system have a 
common way to retrieve and store data, which also supports interoperability. In general, we 
distinguish between structural, e.g., structure of the energy community, users, etc., and time-
series data, e.g., load and generation profiles and their forecasts. This data is stored in two 
different types of the databases: the structural data is stored in a relational database 
(PostgreSQL), while time-series data is stored in a time-series database (InfluxDB). 

IV.1.1.  Relational Data 

In general, the CIM must represent the different energy infrastructures of the energy island, 
e.g., the electricity grid, district heating or cooling networks. In addition to that, any asset that 
is connected to these infrastructures and, hence has an impact on the energy island, is 
required to be known. Among others, these assets contain any controllable and non-
controllable loads/generations, the inter-connector (heat pump, combined heat and power 
plant, EV charging station) and external grid connections. Any connection of an asset to an 
infrastructure may be attached with a measurement, e.g., consumption and generation time 
series or static upper/lower limits. The constant limits are stored in the relational database, 
whereas for the time-series data and the relational database only stores a pointer to the time-
series. Finally, users need to interact with the system. Therefore, the user must be modelled 
in the relational database, as well as their connection to some assets, e.g., the asset the user 
may control such as the energy consumption of his flat/building. Figure 16 summarizes the 
requirements of the relation database.  

 

Figure 16 - Abstract overview on the data represented by the relational database of the CIM. 

 

The exact database schema can be found as part of the code and is included in Appendix VI.1.  

The main information stored in the relational database is listed in the following: 

▪ measurement_type: Description of physical parameters and their units. 

▪ measurement & measurement_details: The measurement table reflects either single 
time-series instance in the InfluxDB, and measurement_details extends measurement 
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with additional properties, like visualisation colour, available predictions, or aggregation 
functions. 

▪ asset: An asset reflects any infrastructure object in the energy island, like heaters, PV 
panels, rooms, buildings etc. Assets can be connected together via links and can be 
extended with additional key-value properties, which are specific for given asset. 

▪ heatmap & areas: Stores details of a 2D graphical map, which determines objects’ 
location on the map for visualization. A heatmap contains areas, which are polygons 
linking asset, dashboards and other heatmaps. 

▪ information_panel & information_tile: An ordered tile-like (information tiles) grid layout 
used to present information either in full page or single popup. 

▪ demand: Table containing schedule of energy management recommendations. 

▪ notification: Table containing details about information, warning and error, and which 
user should be notified about it. 

IV.1.2.  Time-series Data 

The RENergetic system need to deal with a lot with time-series data. Therefore, all data that 
varies over time is stored in the time-series database InfluxDB that allows efficient access to 
the data. The InfluxDB has the following data structure. 

▪ bucket: A bucket is a location where data is stored, and all time-series of a bucket share 
the same retention period. We will create one bucket for each energy island named 
with the energy_island_name. 

▪ measurement: A measurement describes the data stored in the associated fields. We 
will use abstract measurement names, e.g., outside temperature, energy produced, 
heat consumed, water flow. 

▪ field: Fields are stored as key-value pairs, it is used to record the actual data values 
(including the timestamp of the measurement). We will use the names of physical 
measurements, e.g. power, energy, temperature as the field-keys. 

▪ tags: Tags are key-value pairs that are used to enrich the data with additional metadata. 
Queries checking the value of tags are typically fast, because tags are indexed. We will 
use tags for, e.g., location, prediction model, prediction time window, aggregation 
function and window. 

IV.2.  Forecasting 

Artificial intelligence-based methods that are covered by this epic are planned to be 
implemented as a separate forecasting microservice (Figure 8). It uses data storage to obtain 
historic time series data from energy island. The output of the forecasting service is also stored 
in the data storage of the RENergetic system. It can be used to generate various dashboards 
in the interactive platform. 

IV.2.1.  AI Forecasting Vision 

General vision on AI approach 

The epic Forecasting gives an energy island the ability to learn patterns in the historical data 
and provide temporal forward projections in the future about one or more target variables of 
interest (i.e., one series of measurements in the time series database). Such predicted 
variables being, for instance, energy island (heat or electrical) energy consumption and supply, 
renewability of an energy source in percent or specific indexes for building efficiency. The 
application is evidently cross-sectional to the three Pilots available.  
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The forecasting methods and the algorithms that generate such forecasts, will produce new 
data and information. This is used to either inform managers’ or citizens’ decision-making 
processes or to directly (automatically) affect and modify the behaviour of an energy actuator 
in a technical system. In the former case, the forecasting acts as a pure decision support 
system, in the latter case as automatic Artificial Intelligence (AI) controller of the behaviour of 
a technical energy system.  

Notably in both cases, the capability to do forecasting requires data availability and MLOps 
(Machine Learning Operations) that deliver, orchestrate, and train ML models iteratively on 
streams of incoming data on a regular basis.  

It is evident that this Forecasting epic is fundamentally a horizontal capacity affecting all the 
other epics due to its all-purpose applicability and serving across multiple functions and cross-
epic objectives. Wherever anticipating a response to mitigate risk or optimise solutions is 
required, so is the forecasting and machine learning. 

It is paramount to stress that this epic does not limit to pure forecasting function, but several 
other AI skills are in place.  

 

Figure 17 - AI functions within Forecasting epic 

In fact, as shown in Figure 17, together with Forecasting, other support functions like Anomaly 
Detection, Root Cause Analysis, Sensitivity and Precision Energy are accounted for by the 
Forecasting epic.  

In this sense, the pure prediction of values (classic forecasting) is supported and enriched by 
AI algorithms dedicated to further detect:  

1) Out-of-threshold values (e.g., over-peaking values) 

a. The target variable values are being monitored to detect projected too high (or 
too low) values. 

b. The detection algorithm is nominal or embedded into the same forecasting 
algorithm. 

2) Feature importance and causal inference (causal factors) 

a. In presence of exogenous features supporting the time series prediction, only 
those features important to the task are retained and identified. 

b. In some AI algorithms like Temporal Fusion Transformers the very shape (i.e., 
profile of the target variable in the time series) can provide evidence on the 
importance of historical time segments with more weight to the prediction. 

c. Together with detection of important exogenous features or time windows for 
prediction, some causal inference can be assessed both in model-testing or 
model building approach interventions. This has relations with sensitivity 
analysis as well.  
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3) Predicted output change due to simulated input change (‘what if analysis’) 

a. A trained and tested AI model (algorithm) can be tested by simulation. 

b. Simulation consists of perturbing input randomly (model building hypothesis) or 
modify input selectively (model testing) to aim at assessing impact on the 
predicted output.   

4) Meta-predictions or forward oriented precision classifications/predictions based on 
time-aware energy profile characteristics (precision energy models) 

a. A doubly indexed time series classification is operated either from single or from 
multiple data sources. The first time-index is the number instances repeated 
over time. The second time-index is the lag-order of the time series itself. 

b. After a successful time series classification (a dedicated algorithm) with a fixed 
time series lag-order as by the second index, the classified time series are 
pooled together backwards and ordered by the first time-index to generate a 
single composite time series. 

c. The composite time series is then forecasted itself by a dedicated algorithm. 

d. The temporal forward prediction from the preceding step is in turn classified 
itself by the original pre-trained time series classifier. The result is a 
classification based on the expected shape or time series profile of the target 
variable over time.  

e. The result is a precise classification prediction based on future forecasted 
states or expected future energy profiles.  

AI specific approach 

The additional four approaches above (bullets 1) to 4)) together with standard forecasting 

methods, are expected to generate a strong leverage on RENergetic AI capability. An AI 

business and operational capacity positioned to replicate RENergetic services over any new 

Pilot involved in the future.  

A core vision for forecasting methods in RENergetic is depicted by the following Figure 18. 

 

Figure 18 - AI vision and Forecasting concept 

According to Figure 18, historical data are streamed and dedicated forecasting. Machine 
Learning (ML) and deep learning (DL) algorithms, are trained on such data according to 
selected Pilot user stories.  
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IV.2.2.  User Stories 

As of 1 April 2022, a limited number of User Stories per Pilot are available for direct 
implementation. Each Pilot has responsibility to implement AI skills according to the core 
objective of each user story.  

Each pilot thus can enrich a single story (or multiple stories) with any AI approaches described 
in Figure 17 above: Forecasting, Anomaly Detection, Root Cause Analysis, Sensitivity and 
Precision Energy for single or multi-energy source target. In fact, a single story may require 
forecasting and root cause analysis or simulation according to the narrative in the same user 
story.  

User Story Setup 

The following simplified Table 1 summarizes some exemplary key user stories across pilots in 
terms of roles and narrative as of 1st April 2022. Some of such stories are then converted into 
a final DevOps environment Jira for software transformation.  

Table 1 - Exemplary user stories across pilots before Jira 

OVERALL 
STATUS 

ROLES STATUS GENERIC VIEW 

G01 Waste heat generation from industry/ Factory 

G-1-1 
POZNAN 

 

 

 

 

 

PSNC 
technical 
manager 
+ PUT 
technical 
manager 

 I want to forecast heat flux to PSNC-DC waterloop 
generation (short term) to perform further analytics 
and comparisons with historical data. The goal of 
this analysis is to come up with a strategy to supply 
as much waste heat as possible in order to avoid 
having extra heat dissipation cost / maximise profits / 
perform heat demand response. 

G-3 OSR Lead 
energy 
manager 
in OSR 
(GSD) 

READY I, as an energy manager of GSD (allocated in OSR) 
want to forecast the expected MW heat energy 
demanded by total OSR (Dibit 2 + Dibit 1 + Dimer + 
Others) in order to spot undesirable trends in MW 
volumes with risks of being forced to buy energy 
from national grid or check if surplus MW energy 
(predicted not to be consumed) could be rendered 
available to re-distribute or to re-sell. 

G-3 OSR Lead 
energy 
manager 
in OSR 
(GSD) 

READY I, as an energy manager of GSD (allocated in OSR) 
want to forecast the heat building inefficiency in 
OSR with REN-EI Index. This index will anticipate of 
1 to 5 days the risk (and associated energy trend 
pattern) of a building (or more buildings aggregated) 
to deviate too much from the in-period norm of 
expected energy heat consumption.  The objective is 
to intercept any signal of expected inefficiency 
before it occurs in order to enact a proactive 
response. 

Not all targeted user stories above will enter Jira environment and selection is based on priority 
criteria and timing/operational constraints of WP3. 
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JIRA implements 

As of 1 April 2022, the following Forecasting epic user stories in Table 2 are being under 
development and implementation in Jira. More implementations will occur in the course of 2022 
and early 2023. 

Table 2 - Exemplary user stories in Jira 

Pilot Type of AI AI action Description Roles 

Any 
Pilot 

Forecasting Forecasted 
Building Heat 
Demand for Energy 
Manager 

Forecasts of building heat 
demand in MW (or other 
source) with forward horizons 
between 1 to 3 days. Spot 
undesirable trends in the 
expected heating demand 

Energy 
Managers 

Any 
Pilot 

Forecasting Notifications for 
Energy Manager 
about Reaching 
Heat Demand 
Thresholds 

Detect anomalies in upper 
peaks levels for MW or other 
energy source 

Energy 
Managers 

 

Any 
Pilot 

Algorithm 
control 

Access to 
Kubeflow for AI 
Operator 

Access to Kubeflow to edit and 
modify algorithms 

AI 
Operator 

At this stage of developments in Jira the Forecasting and Anomaly Detection, type of AI is 
available. Other AI algorithmic solutions like Sensitivity, Root Cause Analysis or advanced 
Precision energy classification are due in the late 2022. 

IV.2.3.  Algorithmic View 

Fundamental AI Algorithmic Process1 

The general objective functions required by any algorithm in RENergetic forecasting is driven 
by a clear bias-variance trade off approach applied to any Machine Learning model were: 

any kth AI RENergetic algorithm  

𝑘 = {1,  2,  3,   … 𝑛} expressing an approximation function 

𝐹(𝑥)̇̂   

mapping 𝑥 observed input vectors to 𝑦 observed output responses, shall assume 

𝐹(𝑥)̇̂ = argmax(𝑦𝑜𝑏𝑠 ≅ 𝑦𝑝𝑟𝑒𝑑) 

to maximise asymptotic approximation between observed 𝑦𝑜𝑏𝑠 and predicted 𝑦𝑝𝑟𝑒𝑑        

response values: a minimal bias. This is operated by some dedicated loss function 
minimization of the form 

argmin  𝐿(𝑦, 𝐹(𝑥)) 

which is intended to reduce and contain cross-generalization error performances across 

measurements and trials: a minimal variance. 

 

1Mathematical modelling by D. Baranzini, 2022 (personal communication on 27/04/22). 
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Overall, the RENergetic AI methods are expected to maintain high accuracy and high 

consistency/reliability across applications. That is, an adequate bias-variance trade off. 

Model registry 

In the forecasting group (FOG) Group folder in the RENergetic SharePoint [26] a model registry 
folder, called ‘Python APIs Registry’ contains the continuously updating list of available AI 
estimators or machine learning algorithms in use (or in future use) for the AI applications to 
embed in Kubeflow MLOps orchestrator according to Epic needs and deployments. This list is 
reported in Table 6 in Appendix VI.2. . 

Data  

The data to serve AI algorithms are considered in the light of energy sources (primarily heat, 
electric, renewable sources). Data for machine learning processes consists in a two-way matrix 
form with data in long format structure as shown in Table 3 below. 

Table 3 - Example of long format data for AI algorithm consumption 

Date time 
Index 

Building Water  

Temp in 

Water  

Temp out 

Hot 
Water 

m3/h 

MW m3 MWh 

15/8/20 
1.00 

Dibit2 87 73,2 59,8 0,94 1025204,69 22606,2 

15/8/20 
2.00 

Dibit2 87,8 73,3 64,6 1,07 1025263,56 22606,2 

15/8/20 
3.00 

Dibit2 87,4 73,2 56,2 0,91 1025314,38 22606,2 

15/8/20 
4.00 

Dibit2 86,7 73,3 64,6 0,99 1025381,56 22606,2 

In particular, each column denotes a variable of interest either being the target of prediction 
(e.g., MW values) or a variable supporting the prediction of the target (e.g., Hot Water m3/h). 
Each row instead denotes the time index for each feature in the columns. As of 1st April 2022 
the data variables and time indexes are contained in the file.xlsx in the FOG folder.  

MLOps schema  

The MLOps schema represents the machine learning operations required to run the 

RENergetic AI process from data acquisition to model scoring and model drift evaluation. All 

MLOps steps are represented in Figure 19 below and are all implemented into the chosen 

MLOps software service Kubeflow as summarized in Figure 20.  

All Kubeflow pipelines are easily controlled by the AI Operator in python coding for easer 

programming, processing re-configuration and scaling up across Epics. Kubeflow is critical ML 

coordination module within the RENergetic platform software solution. 
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Figure 19 - MLOps schema reference 

 

 

Figure 20 - Kubeflow software service (configuration point) 

ML models as Python APIs  

To demonstrate the AI application core elements some python interpreter code is provided in 
Figure 21 and Figure 22 below. The Python code represented in Figure 21 specify the Python 
coding imports for: 

1) Pythion API pre-trained model and relative API to score it in Kubeflow 

2) Python APIs to monitor performance according to MAE, RMSE, MAPE and SMAPE 
metrics 
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Figure 21 - Python API to load and score a pre trained model for MW prediction demand 

 

 

Figure 22 - Python API to test model cross-generalisation performance 

All data, snippet and python API codes are generated by Dr. Baranzini Daniele in OSR as of 
1 April 2022. 
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IV.3.  Demand Response for Electric Vehicle 
Charging 

Functionalities of manual and automated EV demand response described in this section form 
the dedicated microservice EV Demand Response in the RENergetic architecture (Figure 8). 

IV.3.1.  Vision 

IV.3.1.a.  Context 

Standard EV charging means that an EV immediately starts charging when connected to the 
charging station until the battery is full, without interruption, and at the nominal power level. 
When smart charging is possible and allowed by the end user, charging could be altered in 
different ways:  

▪ The start of the charging could be shifted. 

▪ Charging could be temporarily interrupted, possibly several times. 

▪ Charging (temporarily) at lower power levels could be possible. 

▪ Energy from the car battery could even flow towards the charging station and local grid 
(vehicle-to-grid or V2G). 

Smart charging provides flexibility towards the electricity system, which could be used for 
different scenarios, among others cost optimization via dynamic pricing or by selling flexibility 
on energy markets, maximizing the use of (locally generated) renewable energy or avoiding 
local grid congestions. 

IV.3.1.b.  Functionality 

EV demand response can operate in two main modes: 

▪ Manual: The users agree to receive notifications on the best moments to charge their 
car. These notifications are generated by a scheduling algorithm that tries to meet as 
good as possible a certain objective (typically from an energy island management 
perspective) taking all relevant current and forecasted context info into account. Hence, 
there is no direct control of the charging station. When the car is connected, it 
immediately starts charging until a full battery is reached or the car is disconnected. 

▪ Automatic: User connects car to charging station, indicates a deadline by when the 
charging should be ready and the current state of charge. The user could also indicate 
additional preferences/constraints such as a minimum State of Charge (SoC) to be 
reached, to use only (local) green energy above a certain SoC, etc. An algorithm then 
remotely controls the charging process to meet as good as possible a certain objective 
(from an energy island management perspective) taking the provided constraints and 
other relevant current and forecasted future context info into account. 

User experience and intuitive visualization is key, so the core smart charging service should 
be complemented with user-oriented services to 

▪ Monitor the charging process, also providing info on obtained rewards by offering 
flexibility (lower cost, positive impact on climate, …) 

▪ The ability to easily set preferences such as whether or not flexible charging is allowed 
(possibly depending on the time of the day/day of the week), minimum SoC to be 
reached, whether or not only renewable energy should be used for charging (possibly 
from a certain SoC level on), if notifications can be sent to indicate good moments to 
charge, etc. 

▪ Check current and expected availability of charging infrastructure and the possibility to 
book a charging spot.  
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This epic is linked to the forecasting epic as for an optimal charging control forecasts will be 
needed on the expected energy needs of the charging stations, other loads within the energy 
island, generation capacity in the neighbourhood, expected occupancy of the available 
charging infrastructure, etc. 

IV.3.1.c.  Architecture 

Figure 23 gives an overview of the Smart Charging subsystem. The specific optimization 
objective will be defined by the multi-vector optimization algorithm and then translated to 
concrete actions for the charging of EVs. 

  

Figure 23 - Smart Charging subsystem structure 

IV.3.1.d.  Stakeholders & Interactions with Smart Charging System 

IV.3.1.d.1.  End User 

Manual Demand Response 

Users can see via the interactive platform the best moments to charge their car and/or they 
can receive direct notifications when there is a ‘good’ moment to charge. When they connect 
the car, it immediately starts charging until a full battery is reached. So, no remote control of 
the charging stations is needed. The user might also receive a notification to unplug the car 
earlier if e.g., no green energy is available anymore to charge. This division in good/bad 
moments is generated by a smart charging scheduling algorithm and takes into account user 
preferences and the local context. 

Good moments could be (depending on the provided user preferences): 

▪ Community moments which are good moments to charge from an energy 
management perspective for the energy island (for users that are open to support the 
local energy island with flexibility) 

▪ Green moments when abundant (local) renewable energy is available (when charging 
with renewable energy is the primary concern) 

▪ Quiet moments when there are certainly charging stations available (when availability 
of charging infrastructure is the main concern of the user) 
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Intuitive visualization of these good/bad moments to charge is key. E.g., colour indications 
could be used on a timeline (green/yellow/red). Note that functionality might be needed to avoid 
that on ‘suggested charge moments’ more people want to charge than there is available 
infrastructure. Booking functionality would be interesting, but probably difficult to realize if no 
direct control of the charging stations is possible. Possible alternatives are to show expected 
occupancy together with the good/bad moments timeline or even use expected occupancy as 
parameter to determine good/bad moments, or to limit the number of users that receive direct 
notifications. Figure 24 shows the main steps for manual demand response mapped on the 
architecture. 

 

Figure 24 - Manual Demand Response algorithm 

Automatic Demand Response 

When a user connects the car to the charging station, he/she indicates a deadline when the 
charging should be finished and the current state of charge via the interactive platform. 
Possibly extra preferences/constraints can be set (once as default, or per session), e.g., to 
only use green energy above a certain SoC, minimum SoC to be reached, etc. The smart 
control algorithm then remotely starts and stops the charging process trying to meet a certain 
objective (set by the energy island manager and/or the end user) and taking relevant 
constraints into account, making sure that the car has the requested SoC level by the set 
deadline. Figure 25 shows the main steps for Automatic Demand Response mapped on the 
architecture. 

Automated Demand Response can be combined with Manual Demand Response by 
encouraging users to still check the portal for the best moments to charge even if they provide 
flexibility during the charging process itself. 

Accompanying user services 

Intuitive user services needed to 

▪ Allow easy setting of user preferences, both default settings as per charging session. 

▪ Allow checking current and expected availability of charging infrastructure. 

▪ Allow monitoring an ongoing charging session. 
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▪ Provide feedback on obtained rewards by charging at a suggested moment and/or by 
providing flexibility during the charging process. WP2 investigates which types of 
incentives (financial, environmental, combination of both) work best. 

▪ Allow possibly booking a charging spot. 

 

Figure 25 - Automatic Demand Response algorithm 

IV.3.1.d.2.  Energy Island Operator 

The energy island operator is responsible to set the objective for the energy island from which 
the specific objective for the EV charging system is derived. Example objectives could be to 
balance local supply/demand in the island, minimize total energy costs, avoid grid congestion, 
maximize profit by selling flexibility to external aggregators, etc. Furthermore, for the energy 
island operator it is important to provide relevant monitoring information, including: 

▪ Energy consumption of the charging stations and load predictions. 

▪ Occupancy of the infrastructure (e.g., how often is the infrastructure fully occupied?). 

▪ Fraction of users that provide flexibility, at which moments during the day/week, etc. 

▪ Obtained benefits in comparison with a scenario without smart charging. 

IV.3.1.d.3.  External Stakeholders 

Energy island flexibility (including flexibility from the EV charging subsystem) could be sold to 
external stakeholders such as the local grid operator or flexibility aggregators. The grid 
operator might be interested in the effect on energy offtake/injection by the energy island due 
to demand response services. The grid operator could provide input on grid constraints or 
(expected) congestion issues, which could be taken into account to define the objective for the 
energy island. A grid operator could even directly use available local flexibility to solve local 
congestion issues. A Flexibility aggregator could include flexibility from the energy island in 
its portfolio and sell it on energy markets (R1/R2/R3 reserve, imbalance market, …) and 
reimburse the energy island operator. An aggregator would be interested to have info on 
currently available and expected flexibility and should have access to an interface to activate 
this flexibility. 
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IV.3.2.  Algorithmic View 

IV.3.2.a.  Introduction 

To realize demand response control algorithms different approaches could be used. 
Traditionally often model predictive control (MPC) algorithms are used [27] [28], where an 
optimization problem is solved using a predefined model. However, deployment of such model-
based demand response algorithms is limited due to uncertainties associated with the 
assumed models and lack of scalability and generalizability [29] [30]. 

Model-free approaches circumvent the aforementioned challenges by formulating the problem 
using a Markov decision process (MDP) where the optimum policy is learned by an agent 
interacting with the environment [31] [32] [33] [34]. The agent receives a reward/cost in each 
interaction and is trained to maximize/minimize the long-term rewards/costs. The figure below 
illustrates the overall goal to jointly coordinate a number or EV charging stations for a particular 
objective (load flattening in this case). 

 

Figure 26 - An illustration of the EV charging coordination problem. Two cars currently 
connected (and remaining so for ∆tdepart), with indicated arrival and departure times (tarr and 

tdep, measured in timeslots) as well as charging needs (noted as time left t) 

In previous work [31], we provided a proof-of-concept for Reinforcement Learning (RL) based 
demand response for joint EV coordination (with MDP formulation that has a quadratic cost 
function and state-action representation). 



Description of the interim version of the ICT tools developed for energy island communities 23/02/2023 

RENergetic  44 

Our recent research as part of RENergetic addresses the real-world implementation and 
scalability challenge of RL-based control, by defining and exploring state-of-the-art MDP 
formulations. More specifically, we, (i) defined new compact state-action representations that 
scale linearly with system capacity and coordination horizon in contrast to exponential scaling 
in [31], (ii) proposed computationally linear cost functions compared to the quadratic cost 
function in [31], and (iii) we studied the impact of our cost functions on RL based control policy 
optimization (by evaluating the computation time per iteration in the FQI algorithm). The next 
sections give an overview of the different components of our improved approach and 
evaluation results of the new MDP formulations can be found in Appendix VI.3.   

IV.3.2.b.  Markov Decision Process 

State representations 

An individual EV charging session is characterized by the (i) EV arrival time, (ii) EV departure 
time (Δtdepart), (iii) required energy, and (iv) charging power. The required charging time (Δtcharge) 
is computed by dividing the required energy with the charging power. A state representation is 
defined using the information from these features. At time step t, the number of EVs in the 
system is NS, and the available information can be summarized as: 

𝑉𝑡 {(∆𝑡1
𝑑𝑒𝑝𝑎𝑟𝑡

,  ∆𝑡1
𝑐ℎ arg𝑒

), … , (∆𝑡𝑁𝑆

𝑑𝑒𝑝𝑎𝑟𝑡
,  ∆𝑡𝑁𝑆

𝑐ℎ arg𝑒
)} 

The underlying idea of charging demand coordination is to exploit the available flexibility in the 
system. This flexibility, i.e., how much charging can be delayed, is represented by Δtflex = Δtdepart 
- Δtcharge. The state can thus also be defined as: 

𝑉𝑡
′ = {(∆𝑡1

𝑓𝑙𝑒𝑥
),   …  , (∆𝑡𝑁𝑆

𝑓𝑙𝑒𝑥
)} 

In our previous research [31] we used a matrix state representation using set Vt with 2 
parameters (Δtdepart, Δtcharge). We now propose to use a more compact vector state 
representation using set Vt

’ with only 1 parameter (Δtflex). 

The matrix state representation summarizes all the information available from the environment 
and results in a fully observable setting. The vector state representation only summarizes the 
information about flexibility, and results in a partially observable setting. Yet it still is highly 
relevant for making charging decisions and this representation results in a smaller number of 
states in the state space of the problem compared to the matrix state representation. 

Action representations 

Our agent needs to decide which EVs to charge and which ones to delay in a certain state. 
This decision will be based on the available flexibility. EVs that offer similar flexibility will be 
considered together. Actions are represented by a vector us where the element at position d, 
given by ud

s, provides the number of EVs to charge of the set of EVs that thus have the same 
amount of flexibility. 

The total number of EVs with a certain amount of flexibility is Nd.  Thus, the element ud
s of the 

action vector will be a number in {0, ..., Nd} . For example, Nd = 3 means that 3 cars offer the 
same flexibility, and ud

s is the number of cars that will be charged, and thus lies in {0, 1, 2, 3}. 

We scale the elements of action us to be numbers in [0,1], representing the fraction of cars that 
we will charge, i.e., we divide us by Nd (amount of cars with a certain amount of flexibility) or 
Nmax (total number of charging stations). In our previous research [31], we divided action us by 
Nd to estimate a locally scaled action. To improve interpretability, we now also divide action us 
by Nmax to estimate a globally scaled action, which keeps the scaling factor fixed. 

Cost Function 

The objective (e.g., flattening the aggregated EV charging load) will be achieved through 
defining a cost function denoted as C(s, us, s’) quantifying the utility of a transition from state s 
to s’ by taking action us. The cost function will be related to the charging load. Power consumed 
from all EVs by taking action us in state xs will be represented by P(xs, us): 
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𝑃(𝑥𝑠,  𝑢𝑠) = ∑ 𝑁𝑑

𝑆𝑚𝑎𝑥−1

𝑑=0

𝑢𝑠
𝑑 

In our previous work [35], we defined a cost function based on the squared power consumption. 
We now define cost functions that utilize the information from optimum policies of the preceding 
days (where we have information for all EV sessions). This is based on the assumption that 
days with similar EV session characteristics (arrivals, departures and required energy) will 
have similar optimal solutions. The optimal solution, i.e., power consumption for each timeslot, 
for a prior day can be calculated using an all-knowing optimum policy (e.g., by formulating the 
problem as a quadratic optimization problem). The power consumed from all EVs under 
optimal policy coordination is represented by Popt(t,e), where t is timeslot and e represents the 
corresponding episodic day. For preceding E episodic days, the consumed powers from 
episode e-1 to e-E can be summarized in the following set: 

𝑃𝑡,𝑒,𝐸
𝑜𝑝𝑡

= {𝑃𝑜𝑝𝑡(𝑡, 𝑒 − 1),   … ,  𝑃𝑜𝑝𝑡(𝑡, 𝑒 − 𝐸)} 

By utilizing the information about the optimal policy available in this set, we define two cost 
functions. These cost functions are based on the absolute difference between power 
consumed, i.e., Pπ(xs, us), and either the average or the median of set Popt

t,e,E. 

𝐶𝑙,𝑎
𝐸 (𝑠,  𝑢𝑠,  𝑠

′) = |𝑃𝜋(𝑥𝑠,  𝑢𝑠) − 𝑎𝑣𝑔(𝑃𝑡,𝑒,𝐸
𝑜𝑝𝑡

)| 

𝐶𝑙,𝑚
𝐸 (𝑠,  𝑢𝑠,  𝑠

′) = |𝑃𝜋(𝑥𝑠,  𝑢𝑠) −𝑚𝑒𝑑𝑖𝑎𝑛(𝑃𝑡,𝑒,𝐸
𝑜𝑝𝑡

)| 

The second term of these cost functions is the average/median of power consumption by 
optimum policy coordination for the preceding 𝐸 episodic days. Minimizing the long-term cost 
calculated from these cost functions translates to reducing the deviation of the current charging 
policy (π) from the optimum policies of preceding episodes. Hence, the current charging policy 

(π) learns to mimic the behaviour, and subsequently the objective, of these optimum policies. 

These cost functions will be effective for any coordination objective (e.g., cost-saving, peak-
shaving, etc.), as the current charging policy approximates the optimum policies of preceding 
episodes, which can be trained for any objective. 

State-Action Value Function 

Solving the MDP means finding an optimum control policy. The policy can be identified by 
evaluating a state-action value function, i.e., the Q-function, and selecting the action that 
minimizes it at each time step. The Q-function corresponding to the optimum policy can be 
calculated if the transition probabilities between states are known. However, these are 
unknown in our setting, hence we use a learning algorithm to approximate the optimum Q-
function using batch reinforcement learning. 

Batch Reinforcement Learning 

In batch reinforcement learning algorithms, optimization is performed on data collected in past 
experiences rather than online interactions from the environment. We use the historical EV 
data (arrivals, departures, and required energy) and a random policy to collect past 
experiences. Each experience is defined in terms of (i) an initial state s, (ii) the action taken us, 
(iii) the resulting state s’ after taking the action, and, (iv) the associated costs C(s, us, s’). An 
experience set denoted by F contains tuples (s, us, s’, C(s, us, s’)) and is generated based on 
the state representation, action representation, and cost function. 

We use the Fitted Q-iteration [36] algorithm to learn the optimum Q-function from F. A fully 
connected Artificial Neural network (ANN) is used as function approximation. 

IV.3.3.  Next Steps 

Next steps for this epic include the definition of user stories and mock-ups to start implementing 
the different required services for demonstration of this epic in the pilots in Ghent and Segrate. 
Furthermore, validation of the algorithmic approach will be performed with pilot data from the 



Description of the interim version of the ICT tools developed for energy island communities 23/02/2023 

RENergetic  46 

pilots and investigation of other objective functions (e.g., maximizing self-consumption instead 
of load flattening). 

IV.4.  Demand Response for Heating Domain 

A Heat DR microservice (Figure 8) is responsible for demand response functionalities in 
heating domain described in this section. This microservice interacts with Data Storage to 
retrieve injected data and outputs of the Forecasting service to generate the demand response 
recommendations and store them in the databases according to the defined CIM.  

IV.4.1.  Vision 

As for the case of EV demand response heat demand response can be implemented in two 
ways:  

▪ As automated demand response where the interaction level with the end user (i.e., the 
non-professional user as e.g., residents, the list with all user roles considered in 
RENergetic system is in Appendix VI.4. ) is restricted to configuration settings.  

▪ As manual demand response where there is a more or less continuous interaction with 
the end user, either via push or pull communication. 

Heat demand response is characterized by two issues: a high level of inertia and the absence 
of realistic physical constraints with regards to the availability of power sources. Inertia leads 
to an extremely high level of latency between the actuation of a power steering knob that 
affects the temperature in the distribution grid and the impact on the room temperature of the 
inhabitants of the energy island. This increases the scope for automated demand response, 
as changes on the supply side take a long time to affect people’s comfort, and by nature 
demand response activations are only temporary. However, this depends to a high degree on 
the specific use case at hand including the corresponding heating technology as different 
technologies are characterized of, among others, different latencies.  

In the heating domain, theoretically, at all times a temporary gap between supply and demand 
might always be closed by increasing or decreasing the controllable energy sources that are 
from the point of view of the energy island “infinite” e.g., oil or gas for a boiler. This simplifies 
the application of demand response both in an active and in a reactive version without having 
to bother about very short-term physical issues (contrary to electricity demand response).  

At the same time, heating is a particularly sensitive issue for people affected by the system, as 
comfort and the associated fear of loss of comfort and control play a major role here. This has 
to be taken into account when designing opt in options or defining the technical actuators of 
demand response. For instance, should in the case of manual demand response, thermostats 
be controlled externally, the way to do this and the boundaries of this interference need to be 
transparently discussed with inhabitants and determined by them. 

For the case of heat demand response, the trigger metric might be some cost ratios between 
the different energy sources, where cost can be CO2 or other cost. It might alternatively be the 
expected availability of waste heat or a request from the district heating operator. This is 
feasible for both automated and manual demand response elements; if the solution contains 
elements of both, a threshold between the two elements could be defined by a temporary 
range. 

IV.4.1.a.  Related User Stories: 

User stories are differentiated into both the various roles that are necessary to implement heat 
demand response and into the two general approaches “automated” vs. “manual” demand 
response. It is worth noting that automated demand response can be treated as an automatic 
operation of the system that requires manual confirmation by the technical manager. Such 
approach is caused by safety reasons and after successful and positive experience can be 
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deployed as a fully automated solution. Here, in order not to inflate the document, only some 
user stories for the end users and for the technical managers are extracted. 

The main use stories for end users for automated demand response are: 

▪ I in my role as a resident want the automatic demand response system to operate within 
my comfort zone in order to ensure my comfort. 

▪ I in my role as a resident prefer a possibility to override the automatic demand response 
somehow when the temperature is not comfortable in order to secure my own comfort 
and keep some kind of control 

▪ I in my role as a resident want access to information why my heating is optimized at 
peak times in order to understand what is happening within my home and heating 
system. 

The main user stories for technical managers for automated demand response are: 

▪ I in my role as a technical energy manager want to receive recommendations about 
when, where and how to change temperature settings in my building heating systems 
upon some forecasted change in a heat source. 

▪ I in my role as a technical energy manager want to an automated activation of 
temperature setting in my building heating systems (when, where, how) upon some 
forecasted change in a heat source. 

▪ I in my role as a technical energy manager want live & forecasted information on heat 
supply and demand to decide when to activate the automatic demand response system 
in order to ensure correct reactions in terms of time and quantity. 

The main user stories for end users for manual demand response are: 

▪ I in my role as a resident want constant life and forecasted information about the 
availability of heat supply (e.g., waste heat) to be able to adapt my behaviour based on 
information in order to save money & live more sustainably 

▪ I in my role as a resident want to get notifications that give me an easy understandable 
signal (e.g., traffic light) and short information (or recommendation when it is red) which 
tells me when it is best to use my heating or adapt my heating behaviour in order to 
understand the system better and be able to contribute to sustainability. 

▪ I in my role as a resident want to get individual incentives or rewarding information 
when I comply with recommendations and actively decide for a change in my heating 
behaviour in order to feel valued for my contribution. 

▪ I in my role as a resident want to get community incentives or rewarding information 
when I comply with recommendations. 

 The main user stories for technical managers for manual demand response are: 

• I in my role as a technical energy manager want live & forecasted information on heat 
supply and demand to track the system operation according to my requirements 
including information (traffic light) displayed to end user. 

Figure 27 gives a graphical overview of the different configurations that can be applied based 
on the sites’ characteristics. For instance, individual incentives are only feasible in so far as 
there are individual data available that keep track of the degree to which the desired behaviour 
(heat adaptation) has been implemented. If such data is not available, there can be only a 
community incentive or no incentive. 

This shows that the implementation of heat demand response is very specific of each site and 
has to be configured not only with regards of the desired version of demand response but also 
with regards to feasibility which is mostly determined by data availability. 

In order to make user stories more graspable, additionally mock-ups were developed. 
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Figure 27 - Heat demand response configurations 

IV.4.2.  Algorithmic View 

For a manual demand response is key that the information is given to the user both when the 
situation requires but also when the user can best help to improve the renewability of the 
energy island. We achieve this by dividing the process in two conditions.  

▪ Is the energy island producing energy in a non-renewable way? 

▪ Is the user in question one that could more easily fix this situation? 

This is a very simple view of the algorithm developed. We solve the first question by using a 
custom-made renewability score and the second by using a consumption algorithm to 
recommend actions. 

Renewability Score 

The metric for the renewability score is calculated as a ratio between the energy that comes 
from renewable sources (𝐸𝑅𝑒𝑛) and the total energy produced(𝐸𝑇𝑜𝑡) within the island.: 

𝑅𝐸𝑁𝑠𝑐𝑜𝑟𝑒 =  
𝐸𝑅𝑒𝑛
𝐸𝑇𝑜𝑡

 

In which 𝑀𝑊𝑟 stands for the Megawatt power generated by renewable sources while 𝑀𝑊𝑡 is 
the total Megawatt generation. How we determine the megawatt power generated by those 
sources. We define for this a sum: 

 𝑀𝑊𝑟 = ∑ 𝑀𝑊𝑖 ∗ 𝑅𝑖𝑁  

𝑅𝑖 is the renewability score of each source, which can be determined as follows: 

▪ Fixed (F) - the value for this source is fixed and cannot be changed in time. An example 
of this would be a full gas boiler which Renewability score would be 0, or a solar 
thermal, which has a value of 100. 

▪ Variable - the value is not fixed in time. Depending on conditions or characteristics, the 
value of its renewability will change. How this value change creates two different types: 

▪ Calculated (V-C) -these sources mix two or more types of sub-sources, which are fixed 
(in terms of renewability score) energy sources. We could store them separately but 
that could cause a DB management issue as we plan to store values for the tools in 
data frames. Therefore, calculations will be done in previous steps to have to values 
returned: MW produced and R percentage of them from Ren Sources.  

▪ Inferred (V-I) - These sources are not a mix of sources but rather a conditioned 
environment. For instance, if the conditions are in a certain way, then the source is fully 
renewable and in others not.  
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The V-I case could be a bit more complicated as maybe there is not enough data to stablish a 
full score, then it may be considered as a fixed source with 50 as value, so that is not fully 
renewable. Also, the case of values for which there is an estimation of the renewability as a 
function of outside conditions that has a specific formula or regression model. 

Temperature Actuation Recommendation 

This is for the case in which the Renewability score for the energy island has fallen below the 
threshold given by the energy manager. Once this happens, the recommendation to lower the 
temperature will be given. This is not a recommendation to the entire island but just to select 
ENVIRONMENT, understanding as environment the most granular separation of areas on the 
energy island, as an example of this, if the most granular data we have access to it at building 
level, a different recommendation will be given to each user inside that building.  

 The action of sending the recommendation is given into three different metrics: 

• Excess consumption based on forecast: Based on the predictions of the model 
related to the consumption of the environment, the idea of this metric is to detect 
abnormal behaviour. We could think of this as a binary variable (Excess/Normal), but 
we could expand the definition to a 0-10 score. As the excess could be infinite, I suggest 
we define the excess limit as 2 times the forecasted consumption, meaning if the 
consumption is 2 times or more the forecasted value then the metric will be a 10, if it is 
the value or less then the metric is 0. In between, we normalize the variable between 1 
and 2 times the forecasted value.  

• Representative consumption: This metric tries to score the sources by consumption 
levels, again the environment consuming the most globally will be assigned a 10, the 
least a 0, with normalization happening in between.  

• Energy Rules: This is a metric to be given by the energy manager to each 
environment. If a lower score is given, then the system will not recommend to that user 
and 10 will surely recommend.  This is later reflected in the Energy Manager Scores, 
which shall be determined based on practical experience or usability. 

We unite these metrics via a weighted average. The weights given to each metric is also 
decided by the energy manager. That way there is a chance for the energy manager to decide 
how the recommendation goes outside the calculations that we are performing. 

As an example, the following situation is presented.  

The energy manager has marked 6, 10, 10 as weights for the metrics. This way the energy 
manager considers that both his own score (Metric 3) and the representative consumption 
(Metric 2) should be more important than the excess based on forecast. 

Table 4 - Example: Input Variables for each building 

Environment Forecast Real Total 
Island 

Manager 
Score 

Building A 1,58 MW 1,78 MW 6,8 MW 8 

Building B 1,69 MW 2,35 MW 6,8 MW 5 

Building C 2,78 MW 2,67 MW 6,8 MW 10 

This way Building C would get a recommendation to lower its temperature.  

The view of this score is static, this means that if a building does not follow the recommendation 
that is not factored into the scores. A way to change this is to use the Energy Manager Score 
to prioritize buildings which have an easier way to change its energy behaviour and the weights 
of the scores. For instance, if the weights are [0,0,10] that means that regardless of the results 
from metrics 1 and 2 the recommendation will be given as the Energy Manager considers.  
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Table 5 - Example: final score for each building 

Environment Metric 1 Metric 2 Metric 3 Final Score 

Building A 1,27 0 8 3,77 

Building B 7,81 6,77,6 5 6,33 

Building C 0 10 10 7,69 

This example gives a unique recommendation to one building, but this can be changed to show 
the recommendation to other buildings, so that if the main building has a higher score but is 
not improving its situation, then the optimal Renewability score will be achieved via other 
buildings. 

Outside of this scope, given access to more data, it would allow us to make a more specific 
temperature recommendation, close to a real value for the user to input. 

 

Figure 28 - Elements of heat demand response algorithm 

The algorithmic description above is a preliminary version, which will be refined in the next 
steps of the project. The main focus of the current version is to include considerations towards 
preferences of users and of the energy manager. Open points are to align this with the global 
and domain-specific optimization schemes regarding interfacing with the global optimizer and 
the interaction with manually controlled or automatically controlled temperature. To achieve 
this the exclusive prioritization of one building over the others might have to be relaxed to a 
distribution of the required reaction based on the relative scores. Further, the triggering of this 
algorithm can be interpreted as a dead band in which no recommendations are sent to avoid 
rapid deactivation cycles of heat resources. These rapid activations can be harmful due to the 
large inertia of these resources. Further refinement of the output signals is possible towards a 
concrete temperature signal over lose recommendations if more data is reliably available. 

IV.5.  Heat Supply Optimization 

Functionalities described in this section are implemented in multiple microservices in the 
RENergetic architecture (Figure 8). Together with Local Waste Heat Optimization (Section 
IV.6. , heat supply optimization form the domain-specific optimization service that also supports 
multi-vector optimization service. Forecasting algorithms proposed in this section are planned 
to be included to the system as a part of the Forecasting microservice. 
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IV.5.1.  Vision 

▪ Balance heat supply from various sources in order: 

- to reduce the usage of fossil fuels and CO2 emission 

- to reduce the cost of district heating 

Other user stories that can be developed during this epic, but are considered as a lower priority:  

▪ Operational quality monitoring: 

- Constantly monitor relevant system parameters to ensure service quality and 
reliability 

- Ensure reliability (continuous operation) and quality of service (fulfilling demands) 
for all relevant systems 

- Detect 'anomalies' in operational data (unusual operation, faulty equipment, non-
optimal user behaviour) to avoid abnormal operation and / or excess energy 
consumption 

- Predict energy usage in different part of the system in order to improve heat supply 
balance/optimise energy mix 

- Increased system efficacy – making the system more independent from external 
disruptions.  

- Have predictions in every other aspect of the heating system operation: weather, 
building occupancy, heat accumulation in the system (buildings, network) 

- Know in advance prognosed heat demand in specific buildings / facilities (interfaces 
with users / facility managers) 

- Make sure that the quality of room/apartment heating suffices the requirements 
from my tenants in order not to get complaints 

▪ Optimize hydraulic management of local heating network in order to: 

- Minimise pumping costs (and related CO2 emission) 

- Utilise the ability to accumulate heat in the system in order to smooth demand peaks 
and improve efficiency. 

- Optimise heat supply temperature. 

This last user story could play an important role in optimizing the sustainability and the 
economics of the district heating network, but it is more difficult to control these hydraulic 
parameters through a cloud platform or energy management system (EMS). In practice, we 
will try to evaluate hydraulic efficiency by analysing parameters and performance of the district 
heating network (also based on the results of the forecasting epic), as well as adapting 
programmable logic controller (PLC) settings or consider changes to hardware equipment 
(settings).  

IV.5.1.a.  Example: Importance of the Control of Heat Sources in the 
Ghent Pilot (CEIP) 

Achieving a higher share of waste heat and heat from heat pumps in the energy mix is essential 
to operate district heating networks in a sustainable and economically viable way. The 
production profile of these heat sources however does not always fit the demand in the district 
heating network; increasing the need to fill in remaining demand with unsustainable heat 
sources (e.g., peak gas boilers).  

Two strategies can be enabled to increase the efficiency of waste heat or sustainable sources: 
adapt the demand profile to the production profile of these heat sources (1), a strategy that will 
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be further developed in the epic “heat demand response” (see Section IV.4. ). Another strategy 
could be to control the availability of the waste heat production or sustainable sources (2).  

 

 

Figure 29 - Overview of different heat sources and the expected demand of the district heating 
network of the Nieuwe Dokken in Ghent. 

If the sum of the ‘sustainable’ (industrial waste heat (max. 700kWth), heat pump (max. 
125kWth), CHP (max. 600kWth)) heat sources exceeds the demand, some of the excess 
waste heat cannot be used effectively. If there is a shortage of heat, peak boilers fill in the 
remaining demand. 

 

Figure 30 - Expected share of the different heat sources at full development of the district (1250 
inhabitant equivalent in 2027) and expected trend during the coming years. 

Optimization of heat sources using an EMS (see red bar at the left) can be crucial to achieve 
the sustainability goals of the district heating network. 

In the Ghent pilot, the availability of industrial waste heat from the ester production cannot be 
controlled, as this is dependent of external processes, which are not managed by CEIP or the 
district heating network operator (DuCoop). The wastewater heat pump takes its heat from the 
effluent of the local wastewater treatment, which is operated by DuCoop and has the ability to 
buffer effluent wastewater in the decentralized wastewater treatment plant. 

Not all targeted user stories above will enter the Jira environment and selection is based on 
priority criteria and timing/operational constraints of WP3. 

▪ There is a residual heat demand on the district heating network. 

▪ Heat provided by the heat pump is the cheapest source of heat energy. Calculation 
goes as follows: 

- Calculate the coefficient of performance (COP) for each operable stage, currently 
based on historical data. 

- Calculate the heat price for each operable stage, using the electricity price, the COP 
and the electric power consumed/stage. 

▪ When there is solar or stored energy available, take this into account and recalculate 
the price of the stages that can (partly) be powered with ‘free’ energy: 

- The set point of the heat sink (in this case buffer tank 3) is not reached. 
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- There is sufficient heat available in the buffer containing the water that heat is 
extracted from (buffer flow and T) 

▪ The EMS is active (communication with EMS or default) 

Planned expansion: EMS controls the following set points of the heat pump: 

▪ Heat pump operation mode [0, 1, 2] 

▪ Compression stage 1 [0, 1] 

▪ Compression stage 2 [0, 1] 

▪ Compression stage 3 [0, 1] 

▪ Delivery temperature [°C] 

 

Figure 31 - Overview of the activation of the heat pump and availability of other heat sources in 
the district heating network of DuCoop at the Nieuwe Dokken in Ghent (pilot CEIP). 

Since February 2022, the heat pump is controlled to work only when there is sufficient 
demand, and no other sustainable heat source is fulfilling the demand at the same time. 
Using the EMS, the heat that the heat pump produces is put to better use; and the heat 
pump is working on a more optimal temperature level. 

IV.5.1.b.  Example: Manual Heat Source Change in Poznan University 
of Technology (PUT) 

Two heat sources are available in the building of the Faculty of Chemical Technology: heat 
pumps and district heating system. Currently, in the building management system (BMS) there 
is a static calculation of the profitability of the source (yellow box in the ).  

As part of RENergetic, we plan to automate these calculations and base them on real 
measurement data, not manufacturer data. 

IV.5.2.  Algorithmic View 

▪ Forecast energy prices (also from electricity in the case of heat pumps), waste heat 
availability, technical parameters (e.g., COP) 

▪ Forecast grid prices and specific CO2-emissions (e.g., from transmission system 
operator datasets or Energy market data) 

▪ Prioritize waste heat usage. 

▪ Optimise operational parameters in order to increase efficiency of waste heat recovery, 
heat pumps, boilers etc. (in most cases it means lowering supply and return 
temperatures and correcting process water flows in part of the systems) 

Not all targeted user stories above will enter Jira environment and selection is based on priority 
criteria and timing/operational constraints of WP3. 
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Figure 32 - A fragment of the synoptic view from the heat pump room. 

 

Figure 33 - SGAM for heat supply optimization 



Description of the interim version of the ICT tools developed for energy island communities 23/02/2023 

RENergetic  55 

IV.6.  Local Waste Heat Optimization 

Functionalities described in this epic are related to Heat Optimization, Forecasting and 
Interactive Platform microservices described by the RENergetic architecture (Figure 8). 
Forecasts and identified anomalies in data, as well as parameters calculated by the heat 
optimization service are then used to create dashboards in the Interactive Platform. 

IV.6.1.  Vision 

There are several definitions of waste heat. It may be misunderstood as heat from the 
incineration of municipal waste or from a combined heat power plant, which are not considered 
within this epic. Therefore, waste heat is understood as heat reused from a system in which 
heat generation is not the main functional purpose. So, waste heat can be classified as coming 
from combustion engines, data centre, system of refrigeration, water from washing, cooling 
and so on. One of the project pilots is the energy island connected to the district heating 
network with data centre and university campus. There, the main and highest impact action is 
related to heat reuse from the data centre. Therefore, waste heat from the data centre is treated 
as a separate epic and the starting point for replicability for energy islands with the 
supercomputing centre as the heat source with the possibility of control the parameters and 
generation. 

It is worth emphasizing that there is significant potential to increase efficiency and heat reuse 
from the data centre. Based on data from 2017, the data centre consumed 416.2 billion kWh 
of electric energy which corresponds to 2% of world annual electricity consumption [37] . The 
significant part of this energy can be reused as waste heat for the local energy island. 

The main parameters characterizing waste heat: 

▪ Flux [m3/h] 

▪ Heat flux [kW] 

▪ Return temperature [oC] 

▪ Supply temperature [oC] 

The user stories of local waste heat optimization from the data centre are related to the 
following important aspects: 

▪ Increase data centre energy efficiency. 

▪ Optimization of waste heat parameters from supercomputers. 

▪ Waste heat prioritization within the energy island. 

▪ Optimization of waste heat utilization, e.g., by preheating of building structures. 

▪ Reduction of costs related to heat within the energy island. 

▪ Monitoring of system parameters. 

▪ Prediction of generation and demand for heat. 

▪ Reducing the usage of fossil fuel units. 

IV.6.1.a.  Example: Waste Heat within Poznań Warta Campus 

Detailed description of this example can be found in deliverable D5.1, but here is a summary 
of information based on this document.  

Basically, Poznań Warta campus pilot consists of three entities: 

• Veolia – district heating operator and the owner of the municipal heat and power plant 

• PUT – Poznań University of Technology - university campus with dormitories. 
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• PSNC – Poznań Supercomputing and Networking Center - data centre owner 

The Figure 34 shows the pilot area and the designation of the current and planned heat 
connections which will be simulated and optimized within the RENergetic project.  

 

Figure 34 - Heat connections within Warta campus in operation (blue, red, purple)  
and planned (green) 

As shown in the picture above, the Poznań pilot considers two possibilities of using waste heat 
from date centre: 

1) First scenario - direct connection of the heat reuse system from the data centre to the 
district heating network (green dashed line)  

2) Second scenario - connection of the heat reuse system from the data centre to the to 
the university campus (solid green line) with the possibility of selling the surplus to the 
district heating network.  

The implementation of each of the aforementioned scenarios requires a separate optimization 
of parameters, in particular the temperature ones, as well as energy and economic analysis. 
Significant environmental benefits are obtained in both cases. 

The chart below, also shown in D5.1, illustrates the exemplary analysis of the possibilities of 
generating heat from the data centre and its use within the campus. 

 

Figure 35 - Data center waste heat potential related to campus heating demand 

Preliminary analyses showed that heat generation potential including electricity from the 
compressor totalling 1.3 MW/h will cover campus heat demand during the summer period and 
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will enable the sale of excess waste heat to the district heating network at the level of 
15 000 GJ/a. Heating power from PSNC equal to about 2 MW/h will cover the campus demand 
of around 96% and the sale of approximately 38000 GJ/a of excess waste heat to the district 
network.  

IV.6.1.b.  Related User Stories 

The main use stories for local waste heat optimization related to data center are: 

▪ Monitoring 

o I in my role as a business manager I want to monitor process of supplying waste 
heat (focused on sales) in order to keep control of my new business model. 

o I in my role as a technical manager I want to monitor process of supplying waste 
heat (focused on technical parameters) in order to keep control of my new 
business model. 

o I in my role as a technical manager want to monitor data centre electric energy 
consumption in order to keep control. 

▪ Forecasting 

o I in my role as a business manager I want to forecast heat flux to PSNC-DC 
waterloop generation and electric energy consumption by data centre (long 
term) to perform further analytics and comparisons with historical data (surplus 
analysis, optimization). The goal of this analysis is to come up with a strategy 
to supply as much waste heat as possible in order to avoid having extra heat 
dissipation cost and maximise profits. 

o I in my role as a business manager I want to forecast heat flux from a data 
centre, its load and electric energy consumption (long term). I want to obtain 
simulation results (cost analysis) in order to evaluate how changes of the input 
features (e.g., load in a data centre, coolant temperatures) would impact the 
predicted heat flux from a data centre. Simulations should include potential 
dynamic changes of a data centre state by load shifting, adjusting CPUs clock 
speed or inlet temperature of servers. The long-term purpose of simulations is 
to plan development of a data centre and new investments. 

o I in my role as a technical manager I want to forecast heat flux to PSNC-DC 
waterloop generation and electric energy consumption by data centre 
(short/long term) to perform further analytics and comparisons with historical 
data (surplus analysis, optimization). The goal of this analysis is to come up 
with a strategy to supply as much waste heat as possible in order to avoid 
having extra heat dissipation cost and maximise profits. 

o I in my role as a technical manager I want to review models (to get insight into 
importance of input features, e.g., energy consumption, load in data centre, 
coolant temperatures) used for prediction of heat flux to PSNC-DC waterloop 
generation, electric energy consumption and load (short/long term) in order to 
identify features or patterns with the highest impact. 

▪ Detecting anomalies 

o I in my role as a technical manager I want to detect anomalies in load data, 
electric energy consumption and heat re-use system operation to avoid 
abnormal operation and / or excess energy consumption. Detection of such 
problems is especially important when new systems are integrated to a data 
centre and when changes in data centre operation (e.g., cooling temperatures, 
load) are introduced. 
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IV.6.2.  Algorithmic View 

Local waste heat optimization from the data centre requires the following points: 

▪ Monitoring of parameters of the waste heat reuse system, such as temperatures and 
heat flux. 

▪ Forecasting tools for data like potential of waste heat generation, heat demand within 
energy island, heat pumps parameters, temperatures in the district heating network. 

▪ Forecasting tools related to potential profits from the sale of waste heat in various 
scenarios. 

▪ Anomaly detection tools. 

▪ Creating a model of the data centre enabling simulations of changes in operating 
parameters (for example the power usage of DC due to deployment of new IT 
equipment) and simulation of the waste heat reuse process. 

IV.7.  Interactive Platform 

The interactive platform is a dedicated microservice (Figure 8) that is responsible for the visual 
representation of the results of other microservices stored in the databases according to the 
CIM. 

IV.7.1.  Vision 

The interactive platform epic is a cross-cutting issue as it is in some way affected by all other 
epics: It receives input to be communicated from heat supply optimization, heat and EV 
demand response, amongst others, but indirectly via those also from the forecasting epic.  

It is thus a meta-use case that addresses the need for representation, feedback and system 
analysis of all other use cases.  

To this end, the following issues need to be defined: 

(1) WHO FOR? 

(2) WHAT FOR? 

(3) WHAT DATA? 

(4) WHAT VISUALIZATION? 

This implies that not only the objectives of communication need to be clarified (What – to 
whom) but also the granularity (both temporal and geographical) of data. In dependence of the 
first two issues different levels of access and interactivity need to be defined, which implies a 
hierarchical construction of platform pages. 

The main user groups interacting with the RENergetic IT system are (more information about 
the roles to be found in deliverable D7.1): 

The general public: Part of the visitors that have no invested interested in the energy island, 
because they are only “passers-by”, visiting the island only for a transitory period of time 

Associates: Regularly visitors of the energy island that might take an interest in the 
development of the energy island as it is part of their daily activities as students or staff. 
Obviously, they have more rights and data issues. 

Tenants: The part of the energy island’s inhabitants that do not own the building units that 
they inhabit, but who have a prolonged interest into energy island issues. They also have 
extended rights, as e.g., participating in manual demand response, and data privacy issues. 
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Owners: In the energy island stakeholder analysis, “owners” are the owners of building units 
that are – contrary to investors – also operational. Also, they have an invested interest in the 
energy island. 

Technical (Energy) managers: These are the professionals operating the infrastructure of 
the energy island, specifically with regards to the available energy vectors, be it electricity, heat 
or electricity for EVs. 

Business (Energy) managers: The professionals that are responsible for cost and benefit 
assessment of the envisioned energy measures. This does not necessarily only imply financial 
benefits. 

Sustainability evangelist: The sustainability evangelist – if this role is defined in the energy 
island – represents sustainability issues, for the case of RENergetic, mainly regarding energy. 

This analysis leads to a basic structure of the interactive platform along two lines: one for the 
private end-users and one for professionals. The reason is that those two user groups have a 
different set of skills with regards to graphs and data interpretation. However, in order to avoid 
double work, whenever possible, joint pages are to be implemented. 

As the analysis shows, specifically for end-users, the platform needs to be organized in a 
hierarchical way where the general public has the lowest set of viewing rights and owners are 
on the other end of the range. As mentioned, managers will be supplied with a separate line 
of interactive pages:  

For the general public and visitors: 

Information 

▪ Energy efficiency and energy data on building / area level. 

▪ Visual designed feedback and developments. 

▪ Tips for energy behaviour. 

Interaction 

▪ Opportunity to learn more. 

▪ Opportunity to ask Questions. 

▪ Feedback for constant updates. 

To-Keep-In-Mind 

▪ Rebound effects. 

▪ Easily understandable for lays. 

▪ Create attention, provide a touch point.  

▪ What about non-digitals? 

For residents: 

Qualitative Information 

▪ Notifications. 

▪ Visual Feedback. 

▪ Classification in comparison to similar households. 

Quantitative Information 

▪ Actual energy efficiency & energy consumption data. 

▪ Data comparison to other time points. 

▪ Costs & cost reductions. 

To-Keep-In-Mind  
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▪ Rebound effects. 

▪ Negative emotions, reactance. 

▪ Reversed effects due to comparison. 

▪ Easily understandable for lays. 

For managers 

Information 

▪ At the consumption side and the generation side, together with their interaction 

▪ About forecasting (quantitative info), proposed optimized schedules/plans. 

▪ Also, recommendations, alerts, tips, qualitative info based in optimizers. 

▪ Maybe other data (special events...other predictors) 

Interaction 

▪ Very usable, graphical, drill down, filter, zoom in 

▪ Information to take decisions and actions. 

▪ Historical info is useful to understand the new info. 

▪ But also, you can input some data/actions to be automated 

▪ Push notifications/reports available. 

To-Keep-In-Mind 

▪ Not to overlap features already available at the EMS/BMS level 

▪ Focus on making the algorithms useful. 

▪ Specific role for “Administrator”, someone taking care that everything is working OK 

The final question to be answered is on which device the communication should take place. 
Among the pilots, the most agreed solution is either an online web-based platform with and 
without restricted access sections. In some cases, e.g., for manual heat demand response in 
Ghent, the communication should take place via a screen in the apartments, for other specific 
functionalities as e.g., manual heat demand response with students at PUT, communication is 
divided between representation of information on a web-based platform and emails or an app 
to send adaptation requests. 

IV.7.2.  User Stories and Mock-ups 

The analysis above results in a set of different sets of user stories aimed at the different user 
groups of the interactive platform. These are too many, to be displayed here, however, the 
ones relating to all users of the interactive platform are: 

▪ IP-0: Anybody interacting with the Energy Island can access the interactive platform as 
a visitor using a web page or smartphone app, including the possibility to receive push 
notifications/emails/messages. 

▪ IP-1: Anybody interacting with the platform should be restricted to layers of information 
- layer 1 generic, simple summary of energy expenditure/emissions of the island; layer 
2 accessible via building-wide login, specific but still simple summary of energy 
expenditure of the building; layer 3, personalized log-in, for access to personal energy 
expenditure if data is available. 

▪ IP-2: Energy information display should be possible for different aggregation levels 
(sources, energy vectors, geographical aggregation, time). Aggregation levels will be 
displayed dependent on rights of roles. 
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In order to visualize the interactive platform, as a first step of the WP3 implementation task, 
the prioritized interactive platform user stories were poured into a system of mock-ups. 
Whenever possible, these are based on already existing examples in order to avoid re-
inventing the wheel; in other cases, as e.g., heat demand response, clearly new designs have 
to be created. Two examples that as a next step will be tested with final end-users, are shown 
here. These mock-ups are subject to ongoing discussions and will most probably be changed 
due to internal or external feedback. 

Figure 36 shows the different communication elements with the final end-users. Green 
rectangles signify buttons, red rectangles signify relations to other pages of the mock-up 
system or explanations of different text. This mock-up is the “generic” version that combines 
all options, which can be mixed and matched by pilots and replicators – of course impacting 
the elements of the back end necessary to provide the chosen functionality. The mock-up 
consists of 5 elements: the representation of the renewable share (greenish circle), the 
recommendation in which direction to adjust temperature, up or down (white rectangle with 
arrow), the detailed recommendation including temperature (white rectangle with 
temperatures; not chosen by any pilot), the buttons and an “Away mode” that asks people to 
turn off the heating in case they leave the building for an extended period of time (greenish 
rectangle). Also, the latter has not been chosen by any pilot. 

 

Figure 36: Mock-up for heat demand response with inhabitants 

Also, Figure 37 displays a part of the heat demand response mock-up series, as they have 
been created from scratch, not building on existing tools. It shows the degree to which a 
common objective of the current heat demand response event has been achieved with the 
accumulated feedback from the participants, either per active acknowledgement (see Figure 
36) or per monitoring from the part of the management. The rectangle on the right-hand side 
represents a community incentive that has to be determined by the pilot or replicator, e.g., a 
barbecue organized for the community. 

 

Figure 37: Mock-up for heat demand response Community Incentive 
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VI. APPENDIX 

VI.1.  CIM Relational Database 

 

Figure 38 - Database schema 
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VI.2.  Forecasting Models Registry 

Table 6 - Model registry for RENergetic Forecasting, Anomaly Detection, Root Cause Analysis, 
Sensitivity and Precision Energy (prioritized API models are orange coloured). Status as of 1 

April 2022 

API URL Description 

PyCaret  https://pycaret.org/ Provides both statistical ML and DL 

modelling 

Sktime  

 

https://www.sktime.org/en/sta

ble/index.html  

Forecasting + classification + clustering 

tslearn https://tslearn.readthedocs.io/

en/stable/index.html  

Forecasting + classification + clustering 

 

Darts https://github.com/unit8co/dar

ts  

Python – from statistical or DL approaches 

Arrow 

 

https://github.com/arrow-

py/arrow  

Data engineering for timeseries 

greykite https://github.com/linkedin/gr

eykite  

LinkedIn to time series 

tsfresh https://tsfresh.readthedocs.io/

en/latest/  

Python – automate exogenous features 

pyts https://pyts.readthedocs.io/en

/stable/  

A Python Package for Time Series 

Classification 

ROCKET   

(+mini-rocket) 

https://github.com/angus924/r

ocket  

In sktime 

tsai https://timeseriesai.github.io/t

sai/  

AI time series best complex DL approach 

(colab examples) 

Cesium https://cesium-ml.org/  Advanced platform for timeseries 

Featuretools https://featuretools.alteryx.co

m/en/stable/  

automated feature engineering  

Statsmodels https://www.statsmodels.org/

stable/tsa.html  

Statistical models (e.g., ARIMA SARIMAX 

etc...)  

pmdarima.arima.

AutoARIMA 

https://alkaline-

ml.com/pmdarima/index.html  

Grid search for model order for pdq (AR, 

differenceing and q) and seasonal model 

order for PDQs 

Prophet https://facebook.github.io/pro

phet/  

Facebook forecasting 

https://pycaret.org/
https://www.sktime.org/en/stable/index.html
https://www.sktime.org/en/stable/index.html
https://tslearn.readthedocs.io/en/stable/index.html
https://tslearn.readthedocs.io/en/stable/index.html
https://github.com/unit8co/darts
https://github.com/unit8co/darts
https://github.com/arrow-py/arrow
https://github.com/arrow-py/arrow
https://github.com/linkedin/greykite
https://github.com/linkedin/greykite
https://tsfresh.readthedocs.io/en/latest/
https://tsfresh.readthedocs.io/en/latest/
https://pyts.readthedocs.io/en/stable/
https://pyts.readthedocs.io/en/stable/
https://github.com/angus924/rocket
https://github.com/angus924/rocket
https://timeseriesai.github.io/tsai/
https://timeseriesai.github.io/tsai/
https://cesium-ml.org/
https://featuretools.alteryx.com/en/stable/
https://featuretools.alteryx.com/en/stable/
https://www.statsmodels.org/stable/tsa.html
https://www.statsmodels.org/stable/tsa.html
https://alkaline-ml.com/pmdarima/index.html
https://alkaline-ml.com/pmdarima/index.html
https://facebook.github.io/prophet/
https://facebook.github.io/prophet/
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Neuralprophet https://github.com/ourownstor

y/neural_prophet  

Facebook forecasting 

 

Orbit https://eng.uber.com/orbit/ Uber - forecasting 

Merlion https://github.com/salesforce/

Merlion  

Python forecasting 

Pastas https://pastas.readthedocs.io/

en/latest/index.html  

Python forecasting 

pyflux https://github.com/RJT1990/p

yflux  

Python forecasting 

Temporal 

Fusion 

Transformers 

https://www.sciencedirect.co

m/science/article/pii/S016920

7021000637; 

GitHub example: 

https://github.com/h3ik0th/TF

T_darts/blob/main/TFT_2g6_

gpu.ipynb  

Python, TensorFlow, other APIs for Deep 

Learning forecasting 

N-BEATS https://towardsdatascience.co

m/n-beats-unleashed-deep-

forecasting-using-neural-

basis-expansion-analysis-in-

python-343dd6307010; 

GitHub example: 

https://github.com/h3ik0th/ES

_energy_Transformer/blob/m

ain/NBEATS_energy_03.ipyn

b  

Python, TensorFlow, other APIs for Deep 

Learning forecasting 

VI.3.  EV Charging Experimental Results 

VI.3.1.  Experimental Details 

Data and Model Specifications 

Our dataset to train the RL based control policy is derived from real-world data collected by 
ElaadNL since 2011, from 2500+ public charging stations, from which we selected the data for 
2015. We represent this data in an episodic format, such that each episodic ‘day’ starts at 7 
am and ends 24 hours later (the day after at 7 am). Further, we assume an empty car park at 
the end of each episode (all EVs leave the charging stations). A terminal state stabilizes the 
learning process in FQI that adopts a neural network-based function approximation [38]. The 
time granularity is set to Δtslot = 2 h. We jointly coordinate Nmax = 10 charging stations, i.e., at 
most 10 EVs can be connected simultaneously. 

For training the RL agent, we start by creating the experience sets F containing past 
experiences for multiple episodes. For each episode, we start from the first state of a day and 
randomly choose an action from the set of possible actions in each state and observe the next 
state and the associated state transition cost until the terminal state is reached. This single 
sequence of states and actions is referred to as a trajectory. Each transition in this trajectory 

https://github.com/ourownstory/neural_prophet
https://github.com/ourownstory/neural_prophet
https://eng.uber.com/orbit/
https://github.com/salesforce/Merlion
https://github.com/salesforce/Merlion
https://pastas.readthedocs.io/en/latest/index.html
https://pastas.readthedocs.io/en/latest/index.html
https://github.com/RJT1990/pyflux
https://github.com/RJT1990/pyflux
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://www.sciencedirect.com/science/article/pii/S0169207021000637
https://github.com/h3ik0th/TFT_darts/blob/main/TFT_2g6_gpu.ipynb
https://github.com/h3ik0th/TFT_darts/blob/main/TFT_2g6_gpu.ipynb
https://github.com/h3ik0th/TFT_darts/blob/main/TFT_2g6_gpu.ipynb
https://towardsdatascience.com/n-beats-unleashed-deep-forecasting-using-neural-basis-expansion-analysis-in-python-343dd6307010
https://towardsdatascience.com/n-beats-unleashed-deep-forecasting-using-neural-basis-expansion-analysis-in-python-343dd6307010
https://towardsdatascience.com/n-beats-unleashed-deep-forecasting-using-neural-basis-expansion-analysis-in-python-343dd6307010
https://towardsdatascience.com/n-beats-unleashed-deep-forecasting-using-neural-basis-expansion-analysis-in-python-343dd6307010
https://towardsdatascience.com/n-beats-unleashed-deep-forecasting-using-neural-basis-expansion-analysis-in-python-343dd6307010
https://github.com/h3ik0th/ES_energy_Transformer/blob/main/NBEATS_energy_03.ipynb
https://github.com/h3ik0th/ES_energy_Transformer/blob/main/NBEATS_energy_03.ipynb
https://github.com/h3ik0th/ES_energy_Transformer/blob/main/NBEATS_energy_03.ipynb
https://github.com/h3ik0th/ES_energy_Transformer/blob/main/NBEATS_energy_03.ipynb
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is saved in the experience set in the form of tuples (s, us, s’, C(s, us, s’)). We randomly generate 
5000 trajectories for each episode. 

An ANN architecture is used to estimate the Q-function from the experience set F using FQI. 
This network consists of an input layer and 2 hidden layers with ReLU activation functions. 
There are 128 and 64 neurons in the first and second hidden layers respectively. The output 
layer has a single neuron with a linear activation function. The input of the network is a vector 
that is created by combining the state and action. We use Huber loss [39] instead of mean-
squared-error for improving the stability in learning in our algorithm [40]. 

Experiments 

Table 7 - Experience sets (F) generated for Experiment 1 (observability) to evaluate the effect of 
information provided by state-action representation on the performance of learned RL control 

policy. 

Experience Set State Representation Action Representation Cost Function 

F1 Matrix Locally Scaled Quadratic 

F2 Vector Locally Scaled Quadratic 

F3 Matrix Globally Scaled Quadratic 

F4 Vector Globally Scaled Quadratic 

Experiment 1 Observability: Evaluation of the impact of different state-action representations. 
We generate 4 different experience sets, summarized in the table above. Each experience set 
is used to learn a control policy. 

The state-action representations affect the space complexity of an experience set (F), and the 
learning speed of the control policy. To compare different state-action representations, we 
perform an increasing window validation where the size of training datasets is different (see 
figure below). The training datasets are generated from {30, 60, ..., 270} episodes, and we test 
on the immediate next 30 episodes. 

 

Figure 39 - Train and test data selected in different validation methods used in experiments 

Experiment 2 Credit assignment: Investigation of the impact of the cost definition on the training 
and performance of the learned optimum policy. Credit is assigned to each transition (taking 
an action on a given state) based on the defined cost function in the MDP formulation. Based 
on the different cost functions defined we generate 3 different experience sets, summarized in 
the table above. Each experience set is used to train a control policy. 

In the case of different cost functions, the space complexity of the experience set is not 
affected. Linear cost functions are dependent on the optimal charging policies for the preceding 
𝐸 ∈ {1, 5, 10} days. To train the policies on the same size of data, but with different preceding 
days, we evaluate the cost functions using a rolling window validation where the size of training 
sets is kept fixed (see figure above). Data were used for weekdays, which have similar EV 
session characteristics. 
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Table 8 - Experience sets (F) generated for Experiment 2 (credit assignment) to evaluate the 
effect of different cost functions on the performance of learned RL control policy. 

Experience Set State Representation Action Representation Cost Function 

F5 Vector Globally Scaled Quadratic 

F6 Vector Globally Scaled Linear (Average) 

F7 Vector Globally Scaled Linear (Median) 

Performance Evaluation 

To evaluate the performance of the learned policy, we use a metric defined as normalized load, 
which is relative to the load achieved by the optimal policy (obtained from solving the problem 
as an all-knowing quadratic optimization problem). A normalized load of 1 means that the 
optimal policy is reached. 

Furthermore, for performance comparison we include the normalized load for (i) BAU: a 
business-as-usual policy characterized by continuously charging each EV upon arrival, and (ii) 
Heur: a discrete-action heuristic policy that assumes that individual EVs are charged uniformly 
over their entire connection time. 

Policy Training Time: defined as the time it takes for an RL agent to be trained. During FQI, 
we run 12 iterations to train the ANN for each selected training dataset. We record the time for 
these iterations for all the learned policies. 

VI.3.2.  Experimental Results 

Observability: State-Action Representation 

We evaluate policies trained on different state-action representations by analysing the results 
from Experiment 1. The figure below provides the normalized load comparison for control 
policies for different MDPs. Each box is constructed from 30 normalized loads calculated for 
each episode in the test set. We also perform a Wilcoxon signed-rank test on these normalized 
loads to quantify statistically significant difference among different control policies (significant 
for p-values ≤ 0.05). Using RL based demand coordination provides 30%-50% improvement 
in performance compared to the BAU control policy, depending on the training set size and the 
underlying state-action representation in the MDP formulation. 

 

Figure 40 - Normalized load for RL based control policies trained with different state-action 
representations.  Each box is constructed from normalized loads of 30 episodes in the test set. 

(Wilcoxon test p-values: statistically significant difference for p-value < 0.05) 

Locally scaled actions train a better performing control policy compared to globally scaled 
actions. The reason is that locally scaled actions explicitly calculate the percentage of EVs in 
each flexibility bin, which helps in learning a superior policy, in contrast to globally scaled 
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actions where this information is implicit. This performance gains increases with the increase 
in training data size. For a provided action representation, both matrix and vector state 
representations have similar performance. Furthermore, the performance of the control 
policies improves with an increase in the training data size. 

Training time depends on the MDP formulation as each state-action representation has 
different space complexity. Utilizing vector state representation in MDP formulation leads to 
linear space complexity compared to the quadratic space complexity in matrix states 
representations. This results in a reduction in max training time of control policies trained using 
vector state representations, as shown in the figure below. Training time increases with the 
number of episodes in the training data. We note that local scaling of actions decreases the 
training time compared to global scaling, and the lowest training times are reported for the 
vector state, locally scaled actions policy, 30% less than for the training time of the matrix state 
– globally scaled actions policy. 

 

Figure 41 - Training time for RL based control policies trained with different state-action 
representations. (Points and solid lines: Average value calculated across all validation sets, 

Shaded area: 25 to 75 percentile) 

Impact of Cost Functions Definitions  

The performance of a trained control policy depends on the cost function, where an effective 
cost function helps to achieve faster convergence by providing informative rewards. To study 
the effect of cost functions on performance and convergence, we analyse the results of 
Experiment 2. We use the FQI algorithm to train control policies using MDP formulations 
characterized by the different cost functions defined above. The figure above compares the 
average normalized load incurred in different control policies. Control policies are evaluated in 
the test set after each iteration, and the average normalized load is calculated for all episodes 
in all validation sets. Note that linear cost functions are based on the optimum solutions of 
preceding 𝐸 episodes, and we choose 𝐸 = 1 for this comparison. Similar results are observed 
for other values of 𝐸. A policy based on quadratic cost function takes 8-10 iterations for the 
FQI algorithm to converge, whereas the policies trained on linear cost functions take 3-4 
iterations to converge. Furthermore, we notice after a single iteration, both control policies 
based on linear cost functions perform much better than the policy trained with a quadratic 
cost function. 



Description of the interim version of the ICT tools developed for energy island communities 23/02/2023 

RENergetic  71 

 

Figure 42 - Average normalized load per iteration. Linear cost functions with 𝐸 = 1, i.e., 
optimum solution of one preceding day. 

 

 

Figure 43 - Normalized load for RL based control policies with linear cost functions that use 𝐸 

∈ {1, 5, 10}. (Wilcoxon test p-values: statistically significant different for p-value<0.05) 

The figure above shows the normalized load for control policies trained for linear cost functions 
with 𝐸 ∈ {1, 5, 10} (average/median of optimum solutions is calculated for preceding 𝐸 
episodes). We notice similar performance for average and median based linear cost functions. 
Policies trained with average/median of preceding 10 episodes has similar performance to a 
policy trained with information of a single preceding episode.  

VI.4.  User Roles in RENergetic Platform 

The following table contain current list of the roles. These are subject to ongoing discussions, 
and will most probably be changed due to internal or external feedback. 
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Table 9 - User Roles in RENergetic Platform 

ID Role Description 

EC-O Energy Consumption - Owner final end consumer owning an apartment/building; 
most consumer rights 

EC-T Energy Consumption - 
Tennant 

final end consumer, renting; needs information for 
behaviour change 

EC-A Energy Consumption - 
Associate 

final end consumer, spending a lot of time; needs 
information for behaviour change 

EC-PB Energy Consumption - Passer-
By 

final end consumer, temporary, just passive 
recipient of information 

EC-EV Energy Consumption - EV 
Charger 

final end consumer at charging stations, charging 
process-based electricity information 

EC Energy Community Energy Island community - comprising a subset of 
all other roles 

EP_HI Energy Production Heat - 
Internal 

local producer of heat, maybe of various sources, 
fossil & renewable, optimization of resource 
usage 

ES-HE Energy Trader Heat - External external producer of heat, specific, maybe 
dynamic renewable share, collaboration with 
district heat network 

EP-EE Energy Production Electricity - 
Internal 

local producer of electricity, maybe various 
sources, fossil & renewable, optimization of 
resource usage 

ES- E Energy Trader Electricity - 
External 

 

SA-H Scheduling Agent - Heat Central Heat management, technically scheduling 
internal production to optimize cost/CO2 

SA-E Scheduling Agent - Electricity Central Electricity management, technically 
scheduling internal production to optimize 
cost/CO2 

SA Global Scheduling Agent Central Management of Heat & Electricity 

SO-H System Operator - Heat 
Network 

Operator of local heat network, important is cost 
optimization, grid quality maintenance, voltage 
control 

SO-E System Operator - Micro Grid Operator of local heat network, important is cost 
optimization, hydraulic optimization 

DHNO District Heat Network 
Operation (Heat, external) 

External district heat network: temp constraints, 
collaboration with external heat producer 
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DSO Distribution System Operation 
(Electricity, external) 

External grid; maybe sending regulation service 
requests 

IS-H Imbalance Settlement 
Responsible - Heat 

Central heat management, technically balancing 
heat demand and supply 

IS-E Imbalance Settlement 
Responsible - Electricity 

Central electricity management, technically 
balancing heat demand and supply,  

BA-H Billing Agent - Heat Preparing heat invoices for energy consumers 

BA-E Billing Agent - Electricity preparing electricity invoices of energy consumers 

DP-H Data Provider - Heat monitoring of heat data 

DP-E Data Provider - Electricity monitoring of electricity data 

F-H Forecasting - Heat forecasting of heat data 

F-E Forecasting - Electricity forecasting of electricity data 

LMO-H Local Market 
Operator/Interface External 
Grid - Heat 

provides a service whereby the offers to sell 
electricity are matched with bids to buy electricity 

LMO-E Local Market 
Operator/Interface Distribution 
system operator - Electricity  

provides a service whereby the offers to sell heat 
are matched with bids to buy electricity 

 

 

 

 

 

 

 

 

 

 


